## 126. Structural Aspects of the Enantioselectivity of Tartrates with α-Amino-alcohol Salts

Part II

## Crystal Structures of (1*R*,2*S*)-Norephedrine Hydrochloride and (1*R*,2*R*)-Norpseudoephedrine Hydrochloride

by Martin Egli<sup>1</sup>) and Max Dobler\*

Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule, CH-8092 Zürich

(6.IV.89)

Enantioselective host-guest complexes between  $\alpha$ -amino-alcohol salts and chiral tartrates can not be crystallised up to now. To study structural aspects of their enantioselectivity, crystal structures of the components were determined. Norephedrine was used as a reference guest  $\alpha$ -amino-alcohol. (1*R*,2*S*)-Norephedrine hydrochloride (monoclinic, space group *P*2<sub>1</sub>, *Z* = 4, *a* = 8.455, *b* = 10.331, *c* = 12.570 Å,  $\beta$  = 107.45°) and (1*R*,2*R*)-norpseudoephedrine hydrochloride (monoclinic, space group *P*2<sub>1</sub>, *Z* = 2, *a* = 5.493, *b* = 8.052, *c* = 11.986 Å,  $\beta$  = 104.62°) both adopt *M*-synclinal conformations with respect to the ammonium and hydroxy groups. Rather short intramolecular N···O distances indicate interaction between ammonium and hydroxy groups.

**Introduction.** – Chiral tartaric-acid diesters show remarkable enantioselectivity with salts of  $\alpha$ -amino-alcohols [1][2] and are among the simplest known ionophores. Their enantioselectivity has been studied extensively by partition experiments in liquid phases [3]. Since the molecular complexes between tartaric-acid diesters and  $\alpha$ -amino-alcohols could not be crystallised, crystal-structure analyses of the components have been accomplished in order to obtain information on structural aspects of enantioselectivity. The structures of the tartaric-acid diester hosts have been already discussed in [4]. Here, we describe the structures of  $\alpha$ -amino-alcohol guests, and molecular-modeling studies of the host-guest complexes will be presented later [5]. Our investigations of stereoselective behaviour made use of *erythro*-norephedrine  $\cdot$  HCl (1) and *threo*-norpseudo-ephedrine  $\cdot$  HCl (2) as reference guest molecules. Their (1*R*)-enantiomers are preferred by (*S*,*S*)-tartaric-acid diesters.



<sup>1</sup>) Present address: Department of Biology, MIT, Cambridge, MA 02139, USA.

**Force-Field Calculations.** – The diastereoisomers of norephedrine, *erythro*-norephedrine, and *threo*-norpseudoephedrine can, in principle, adopt three different conformations about the central C(1)-C(2) bond (*Fig. 1*). The relative potential energies of these rotamers were calculated using the force-field program MMP2 [6].

(1R,2S)-Norephedrine (erythro)



Fig. 1. Newman projections of possible rotamers for (1R,2S)-norephedrine and for (1R,2R)-norpseudoephedrine. Numbers at each rotamer indicate relative potential energies (kcal · mol<sup>-1</sup>)

Unfortunately, this force field has no parameters for ammonium groups, therefore, the bases of the  $\alpha$ -amino-alcohols were used instead. For the (1R,2R)-enantiomer of norpseudoephedrine, potential energies suggest a clear preference of the *M*-synclinal arrangement, with energies of  $1.74 \text{ kcal} \cdot \text{mol}^{-1}$  higher for the *P*-synclinal and of 4.42 kcal  $\cdot \text{mol}^{-1}$  higher for the s-trans- arrangement. For the (1R,2S)-enantiomer of norephedrine, however, the calculations showed no significant differences (*Fig. 1*). Both calculations are of course hampered by the use of the bases. Possible influences of dipolar interactions in the salts used for the experiments in solution might shift the minimum-energy conformation to a different arrangement.

**Crystallographic Investigations.** – The nonconclusive results of the force-field calculations led us to look at the crystal structures of both optically active diastereoisomers. A crystal-structure analysis of racemic *erythro*-norephedrine  $\cdot$  HCl (1) was published some time ago [7]. The racemic substance crystallizes in the non-centrosymmetric space

group  $P2_1$  with two enantiomeric molecules in the asymmetric unit. Both enantiomers have identical synclinal arrangements (torsion angles O–C(1)–C(2)–N –64.8° and –57.7°) but different conformations. One molecule has a torsion angle C(4)–C(1)–C(2)–N of 172.7° – an s-*trans*-arrangement of Ph ring and ammonium group – the other molecule has an s-*cis*-arrangement, with a torsion angle of 63.6°. A s-*cis* arrangement must be more stable than the s-*trans*-conformer because of dipole interactions.

Crystal Structure of (1R,2S)-Norephedrine  $\cdot$  HCl (1). The optically active erythronorephedrine  $\cdot$  HCl (1) crystallizes in the same space group P2<sub>1</sub> as the racemic substance, also with two molecules per asymmetric unit. Both molecules have *M*-synclinal conformations with torsion angles O–C(1)–C(2)–N of –61.2° and –70.5°, respectively (see *Figs. 2* and 3), and the same s-*trans*-arrangement of Ph ring and ammonium group as one of the molecules in the racemic crystal (torsion angles C(4)–C(1)–C(2)–N 175.2° and 165.2°).



Fig. 2. Newman projection along the C(1)-C(2) bond of one of the two independent molecules in the crystal structure of (1R,2S)-norephedrine  $\cdot$  HCl (1)

All H-atoms of the ammonium and the hydroxy groups are involved in H-bonds to Cl<sup>-</sup> anions, every anion accepting four H-bonds (*Fig. 3*). The N···O distances are rather short, 2.741 Å and 2.881 Å, suggesting interaction between ammonium N- and hydroxy O-atoms. No intramolecular H-bond, however, exists between these groups (*cf. Table 2*).



Fig. 3. ORTEP Stereoview of the (1R, 2S)-norephedrine  $\cdot$  HCl (1), showing the H-bonds to Cl-atoms

Crystal Structure of (1R,2R)-Norpseudoephedrine  $\cdot$  HCl (2). The optically active threo-norpseudoephedrine  $\cdot$  HCl (2) also crystallizes in the space group  $P2_1$ , but in this case with only one molecule per asymmetric unit. The preference of an *M*-synclinal arrangement (torsion angle O–C(1)–C(2)–N –54.7°) suggested by the force-field calculation is confirmed by the structure analysis. Fig. 4 shows the conformation in a Newman projection along the central C(1)–C(2) bond.



(

CI

Fig. 4. Newman projection along the C(1)-C(2) bond in the crystal structure of (1R,2R)-norpseudoephedrine  $\cdot$  HCl (2)



Fig. 5. ORTEP Stereoview of (1R,2R)-norpseudoephedrine · HCl (2), showing the H-bonds to Cl-atoms

The s-*trans*-arrangement of Ph and ammonium groups (torsion angle  $C(4)-C(1)-C(2)-N-176.8^{\circ}$ ) is the same as for *erythro*-norephedrine. Also the H-bonding scheme is very similar. Again, the four donor H-atoms of ammonium and hydroxy groups form H-bonds to Cl<sup>-</sup> anions (*Fig. 5*). The interaction between ammonium N- and hydroxy O-atoms shortens the N···O distance to 2.709 Å, without formation of an intramolecular H-bond.

**Discussion.** – The results suggest, that a s-*cis*-arrangement of hydroxy and ammonium groups is the preferred conformation for both *erythro*- and *threo*-norephedrine. In the case of *erythro*-norephedrine, the energy difference between *M*- and *P*-synclinal arrangements seems to be small, so that crystal-packing influences might suffice to tilt the balance. A similar situation exists for the arrangement of the Ph with respect to the ammonium group. In the crystal structure of racemic *erythro*-norephedrine, s-*cis*- and s-*trans*-arrangements are observed. Again, crystal-packing forces could decide between the two arrangements.

**Experimental.** – Reflection intensities for both compounds were measured at r.t. with a four-circle diffractometer (*Enraf-Nonius CAD4*, graphite monochromatized  $MoK_{\alpha}$  radiation). Crystal data for 1 and 2 are given in *Table 1*. Full lists of coordinates and isotropic displacement parameters as well as H-positions are deposited with the *Cambridge Structural Data Centre* and are available from the authors.

|                                | 1                       | 2                                      |
|--------------------------------|-------------------------|----------------------------------------|
| Formula                        | $C_0ONH_{13} \cdot HCl$ | C <sub>o</sub> ONH <sub>13</sub> · HCl |
| Space group                    | P2,                     | P2, 13                                 |
| Crystal system                 | monoclinic              | monoclinic                             |
| a [Å]                          | 8.455(2)                | 5.438(3)                               |
| b [Å]                          | 10.331(4)               | 8.052(2)                               |
|                                | 12.570(3)               | 11.986(4)                              |
| β                              | 107.45(2)               | 104.61(4)                              |
| V [Å <sup>3</sup> ]            | 1047.4                  | 507.8                                  |
| Z                              | 4                       | 2                                      |
| $\rho$ [g · cm <sup>-3</sup> ] | 1.19                    | 1.23                                   |
| $\theta$ [°]                   | 28                      | 30                                     |
| h max c s                      | -1111                   | -77                                    |
| k                              | 013                     | 011                                    |
| 1                              | 016                     | 016                                    |
| Reflections                    |                         |                                        |
| measured                       | 2662                    | 1578                                   |
| used $(l > 3\sigma)$           | 2041                    | 1328                                   |
| R factor                       | 0.029                   | 0.031                                  |

Table 1. Crystal Data for (IR,2S)-Norephedrine  $\cdot$  HCl (1) and (IR,2R)-Norpseudoephedrine  $\cdot$  HCl (2)

Both structures were solved by direct methods (SHELX-S86 [8]) and refined by full matrix least-squares analysis. For both structures, the positions of all H-atoms were taken from difference *Fourier* maps, and refined isotropically. The final *R* factors were 0.029 for 1 and 0.031 for 2, using weights  $1/\sigma^2$  in both cases. Some details of the molecular geometry are given in *Tables 2–4*.

|             |              |                   | D····A   | Н…А     | D-H…A  |
|-------------|--------------|-------------------|----------|---------|--------|
| 1 (Molecul  | e 1)         |                   |          |         |        |
| N(1)–H(1)   | Cl(1)        | (1-x, 0.5+y, 2-z) | 3.261(3) | 2.49(3) | 166(3) |
| N(1)-H(2)   | Cl(2)        | (2-x, 0.5+y, 2-z) | 3.218(3) | 2.42(3) | 142(3) |
| N(1)-H(3)   | Cl(1)        |                   | 3.175(3) | 2.16(3) | 168(3) |
| N(1)–H(2)   | <b>O</b> (1) |                   | 2.742(3) | 2.33(3) | 105(3) |
| O(1)–H(1)   | Cl(2)        |                   | 3.061(2) | 2.29(4) | 168(4) |
| 1 (Molecul  | e 2)         |                   |          |         |        |
| N(2)–H(1)   | <b>Cl(1)</b> | (1-x, y=0.5, 2-z) | 3.173(3) | 2.37(3) | 160(3) |
| N(2)–H(2)   | Cl(2)        |                   | 3.136(3) | 2.25(4) | 161(3) |
| N(2)-H(3)   | Cl(2)        | (2-x, y-0.5, 2-z) | 3.159(3) | 2.36(3) | 150(3) |
| N(2) - H(2) | O(2)         |                   | 2.881(3) | 2.64(3) | 96(3)  |
| O(2)–H(2)   | Cl(1)        | (2-x, y-0.5, 2-z) | 3.151(3) | 2.44(3) | 164(4) |
| 2           |              |                   |          |         |        |
| N-H(3)      | Cl           | (x-1, y, z)       | 3.261(2) | 2.47(3) | 158(3) |
| N-H(2)      | Cl           |                   | 3.332(2) | 2.60(4) | 156(3) |
| N-H(1)      | Cl           | (1-x, y-0.5, 1-z) | 3.166(2) | 2.37(3) | 155(3) |
| N-H(2)      | 0            |                   | 2.710(2) | 2.40(4) | 105(3) |
| O-H         | Cl           | (1-x, 0.5+y, 1-z) | 3.139(2) | 2.23(3) | 168(3) |

Table 2. *H-Bond Geometry for* **1** and **2**. D...A: Distance donor to acceptor atom, H...A: distance H to acceptor atom, D-H...A: angle donor-donor H-acceptor atom [\*]. E.s.d. (in parentheses) refer to the last digit.

Table 3. Bond Lengths [Å] for 1 and 2 (e.s.d. in parentheses)

|             | 1 (Molecule 1) | 1 (Molecule 2) | 2        |
|-------------|----------------|----------------|----------|
| C(1)–C(2)   | 1.523(3)       | 1.527(4)       | 1.520(3) |
| C(1)-C(4)   | 1.515(4)       | 1.496(4)       | 1.504(3) |
| C(1)-0      | 1.417(3)       | 1.412(3)       | 1.426(3) |
| C(2)-C(3)   | 1.510(4)       | 1.497(5)       | 1.518(3) |
| C(2)–N      | 1.506(3)       | 1.480(4)       | 1.492(3) |
| C(4) - C(5) | 1.382(4)       | 1.396(5)       | 1.393(4) |
| C(4) - C(9) | 1.378(4)       | 1.372(4)       | 1.385(3) |
| C(5)-C(6)   | 1.380(5)       | 1.372(5)       | 1.375(4) |
| C(6)-C(7)   | 1.369(6)       | 1.374(7)       | 1.377(4) |
| C(7)–C(8)   | 1.371(6)       | 1.349(7)       | 1.378(4) |
| C(8)-C(9)   | 1.391(5)       | 1.383(6)       | 1.380(3) |

| ,        | 1 (Molecule 2)                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110.6(2) | 111.7(2)                                                                                                                                                | 110.1(2)                                                                                                                                                                                                                                                                                                          |
| 105.2(2) | 106.0(2)                                                                                                                                                | 105.7(2)                                                                                                                                                                                                                                                                                                          |
| 114.0(2) | 113.7(2)                                                                                                                                                | 112.7(2)                                                                                                                                                                                                                                                                                                          |
| 113.9(2) | 114.7(2)                                                                                                                                                | 113.0(2)                                                                                                                                                                                                                                                                                                          |
| 107.2(2) | 109.2(2)                                                                                                                                                | 108.8(2)                                                                                                                                                                                                                                                                                                          |
| 110.0(2) | 109.8(3)                                                                                                                                                | 109.3(2)                                                                                                                                                                                                                                                                                                          |
| 119.0(2) | 119.2(3)                                                                                                                                                | 121.2(2)                                                                                                                                                                                                                                                                                                          |
| 121.7(3) | 122.8(3)                                                                                                                                                | 120.8(2)                                                                                                                                                                                                                                                                                                          |
| 119.2(3) | 118.0(3)                                                                                                                                                | 117.9(9)                                                                                                                                                                                                                                                                                                          |
| 120.4(3) | 120.6(3)                                                                                                                                                | 120.9(2)                                                                                                                                                                                                                                                                                                          |
| 120.3(3) | 119.8(4)                                                                                                                                                | 120.5(3)                                                                                                                                                                                                                                                                                                          |
| 119.9(3) | 120.8(4)                                                                                                                                                | 119.5(2)                                                                                                                                                                                                                                                                                                          |
| 120.2(4) | 119.7(4)                                                                                                                                                | 120.1(2)                                                                                                                                                                                                                                                                                                          |
| 120.0(3) | 121.2(4)                                                                                                                                                | 121.2(2)                                                                                                                                                                                                                                                                                                          |
|          | 110.6(2) $105.2(2)$ $114.0(2)$ $113.9(2)$ $107.2(2)$ $110.0(2)$ $119.0(2)$ $121.7(3)$ $119.2(3)$ $120.4(3)$ $120.3(3)$ $119.9(3)$ $120.2(4)$ $120.0(3)$ | 110.6(2) $111.7(2)$ $105.2(2)$ $106.0(2)$ $114.0(2)$ $113.7(2)$ $113.9(2)$ $114.7(2)$ $107.2(2)$ $109.2(2)$ $110.0(2)$ $109.8(3)$ $119.0(2)$ $119.2(3)$ $121.7(3)$ $122.8(3)$ $119.2(3)$ $118.0(3)$ $120.4(3)$ $120.6(3)$ $120.3(3)$ $119.8(4)$ $119.9(3)$ $120.8(4)$ $120.2(4)$ $119.7(4)$ $120.0(3)$ $121.2(4)$ |

Table 4. Bond Angles [°] for 1 and 2 (e.s.d. in parentheses)

## REFERENCES

- [1] V. Prelog, S. Mutak, K. Kovacevic, Helv. Chim. Acta 1983 66, 2279.
- [2] V. Prelog, M. Dumic, Helv. Chim. Acta 1986 69, 5.
- [3] a) M. Egli, ETH-Dissertation No. 8729, 1988; b) V. Prelog, M. Egli, M. Kovacevic, submitted to Angew. Chem.
- [4] M. Egli, M. Dobler, Helv. Chim. Acta 1989 72, 1136.
- [5] M. Egli, M. Dobler, in preparation.
- [6] N.L. Allinger, H. L. Flanagen, J. Comput. Chem. 1983, 4, 399.
- [7] H. Hebert, Acta Crystallogr., Sect. B 1979, 35, 2054.
- [8] G.M. Sheldrick, SHELXS-86, 'Crystallographic Computing 3', Eds. G.M. Sheldrick, C. Krüger, and R. Goddard, Oxford University Press, Oxford, 1985, p. 175.