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ABSTRACT

Glycol nucleic acid (GNA) is an acyclic nucleic acid analog connected via phosphodiester bonds. Crystal structures of RNA–
GNA chimeric duplexes indicated that nucleotides of the right-handed (S)-GNA were better accommodated in the right-
handed RNAduplex thanwere the left-handed (R)-isomers. GNA nucleotides adopt a rotated nucleobase orientation with-
in all duplex contexts, pairing with complementary RNA in a reverse Watson–Crick mode, which explains the inabilities of
GNA C and G to form strong base pairs with complementary nucleotides. Transposition of the hydrogen bond donor and
acceptor pairs using novel (S)-GNA isocytidine and isoguanosine nucleotides resulted in stable base-pairing with the com-
plementary G and C ribonucleotides, respectively. GNA nucleotide or dinucleotide incorporation into an oligonucleotide
increased resistance against 3′′′′′-exonuclease-mediated degradation. Consistent with the structural observations, small
interfering RNAs (siRNAs) modified with (S)-GNA had greater in vitro potencies than identical sequences containing
(R)-GNA. (S)-GNA is well tolerated in the seed regions of antisense and sense strands of a GalNAc-conjugated siRNA in
vitro. The siRNAs containing a GNA base pair in the seed region had in vivo potency when subcutaneously injected into
mice. Importantly, seed pairing destabilization resulting from a single GNA nucleotide at position 7 of the antisense strand
mitigated RNAi-mediated off-target effects in a rodent model. TwoGNA-modified siRNAs have shown an improved safety
profile in humans comparedwith their non-GNA-modified counterparts, and several additional siRNAs containing theGNA
modification are currently in clinical development.
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INTRODUCTION

RNA interference (RNAi) is a naturalmechanismof post-tran-
scriptional gene silencing that was discovered in C. elegans
in 1998 (Fire et al. 1998). The first RNAi-based human ther-
apeutic, patisiran (ONPATTRO), received approval by the U.
S. Food and Drug Administration (FDA) in 2018 (Akinc et al.
2019). Patisiran is indicated for the treatment of polyneurop-
athy of hereditary transthyretin-mediated amyloidosis and is
a small interfering RNA (siRNA) composedof 21 nt antisense
and sense strands. This siRNA mediates targeting of the
RNAi machinery to the TTR mRNA, which encodes trans-
thyretin. Both strands have 2′-deoxy-TT overhangs at their
3′ ends and 2′-O-methyl (2′-O-Me) ribonucleotides at se-
lected positions to improve metabolic stability and reduce
stimulation of an innate immune response. The siRNA
drug is administered intravenously and encapsulated in a

multicomponent lipid nanoparticle (LNP) that mediates
delivery to the liver (Soutschek et al. 2004; Zimmermann
et al. 2006; Akinc et al. 2019).

In the past four years, four additional siRNA therapeutics
have received FDA approval: givosiran (GIVLAARI)
for treatment of acute hepatic porphyria, lumasiran
(OXLUMO) for treatment of primary hyperoxaluria type 1,
inclisiran (LEQVIO), an adjunct therapy to lower LDL-C in
heterozygous familial hypercholesterolemia or clinical ath-
erosclerotic cardiovascular disease, andvutrisiran (AMVUT-
TRA) for treatment of the polyneuropathy of ATTR
amyloidosis (Egli and Manoharan 2023). The 3′-termini of
the sense strands of these siRNAs are conjugated to a trian-
tennaryN-acetylgalactosamine (GalNAc), a ligand that spe-
cifically binds to the asialoglycoprotein receptor on the
surface of liver hepatocytes, resulting in efficient internali-
zation, delivery, and eventual endosomal release of the
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siRNA into the cytosol (Nair et al. 2014, 2017;Matsudaet al.
2015; Rajeev et al. 2015; Foster et al. 2018; Janas et al.
2018; Willoughby et al. 2018). Targeted delivery, such as
that mediated by GalNAc, holds enormous promise for
the future of oligonucleotide therapeutics and is expected
to overcome limitations with regards to extrahepatic deliv-
ery and the LNP platform (Seth et al. 2019; Roberts et al.
2020; Hammond et al. 2021).
All 18 nucleic acid therapeutics that have reached the

market to date, including the five siRNAs described above,
four antisense oligonucleotides, five splice site switching
oligonucleotides, an anti-VEGF aptamer, an HBV vaccine
adjuvant, and the two COVID-19 mRNA vaccines have
chemical modifications (Deleavey and Damha 2012;
Agrawal and Gait 2019; Egli and Manoharan 2023). The

chemical modifications utilized in these therapeutics
are the first-generation 2′-deoxy-2′-fluororibonucleotides
(2′-F) and 2′-OMe sugar modifications and the phosphoro-
thioate (PS) backbone linkage and the second-generation
2′-O-(2-methoxyethyl) (2′-O-MOE) and 5-methyl-C-2′-O-
MOE sugar modification and the phosphorodiamidate
morpholino (PMO) backbone modification. Both COVID-
19 mRNA vaccines contain N-methyl-pseudouridine in
place of U to mitigate immune stimulation and 2′-OMe in
their 5′ cap structures (Fig. 1).
The four more recently approved siRNAs contain no na-

tive ribonucleotides, instead they are fully modified using
2′-F- and 2′-OMe nucleotides. In addition, at the ends of
the strands (except for the 3′-end of the sense strand, which
carries the GalNAc ligand), the terminal and penultimate

A

B

FIGURE 1. (A) Structures of building blocks used in nucleic acid therapeutics. (B) Schematics of lipid nanoparticle (LNP) formulations andGalNAc
conjugate.
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bridging phosphate groups are replaced by PS moieties,
which provide protection from exonuclease. A recent inves-
tigation demonstrated that stereopure PS-modification at
terminal phosphates of the antisense strand improves phar-
macology in vivo compared to diastereoisomeric mixtures
of PS linkages (Jahns et al. 2022). For each siRNA, the place-
ment of 2′-F and 2′-OMe ribonucleotides requires optimiza-
tion, and the twoanalogs are carefully balanced for favorable
metabolic stability and protein binding. For example, a
2′-OMemodification at the second position of the siRNA an-
tisense strand hampers loading of the antisense strand into
RNA-induced silencing complex (RISC). The reason for this
limitation is that the methyl group results in a steric conflict
with anα-helical curl of theAgo2MIDdomain (Egli andMan-
oharan 2019). Conversely, the 2′-F modification is well toler-
ated at this site. Similarly, in the seed region of the antisense
strand (positions 2–8), the 2′-O-MOE modification results in
clashes with side chains of the PIWI endoribonuclease
domainofAgo2,but thesmaller2′-Fand2′-OMechemistries
are both tolerated in this region (Manoharan et al. 2011; Egli
and Manoharan 2019). Unlike the uniform modifications
used in splice site switching oligonucleotides, nusinersen
(SPINRAZA), which is uniformly modified with 2′-O-MOE
and PS, and eteplirsen (EXONDYS 51) and golodirsen
(VYONDYS 53), which are PMOs, siRNA strand design re-
quires a regiospecific modification strategy (Egli and Mano-
haran 2019). Regiospecific modification is also important
for some antisense oligonucleotides, for example in the
gapmer design of oligonucleotides such as mipomersen
sodium (KYNAMRO) and inotersen (TEGSEDI), which in-
volves 2′-O-MOE flanking a central PS DNA region.

siRNAs with 2′-F, 2′-OMe, and PS modifications in com-
bination with GalNAc conjugation have proven successful
in the clinic against a range of diseases; however, the com-
plex interactions between siRNA strands andAgo2, the key
player in the RNAi pathway, demand that we keep an open
mind regarding alternativemodification strategies. In addi-
tion to familiar ribose modification sites, such as O2′, C4′,
O4′, and C5′, the search for novel modifications that will re-
sult in siRNAs with better pharmacodynamic, pharmacoki-
netic, and metabolic properties as well as low toxicity and
limited immunogenic and off-target profiles have been ex-
panded to chemistries that abandon the standard DNA,
RNA, or bridged or locked nucleic acid (LNA) sugar-phos-
phate framework (Fig. 2). These so-called xeno nucleic ac-
ids (XNAs) feature alternative backbone linkages and/or
nucleobases (Egli and Herdewijn 2012; Anosova et al.
2016). Chaput and Herdewijn proposed a definition of
XNA and describewhat sets XNAs apart fromunnatural nu-
cleic acids or chemically modified DNA and RNA (Chaput
andHerdewijn 2019). Forexample, LNAshould notbe clas-
sified as XNA because it only contains a modified ribose
moiety. However, peptide nucleic acid (PNA), which has a
neutral backbone that lacks both the sugar and phosphate
linkages, is an XNA (Fig. 2). Other XNAs include L-α-threo-
furanosyl nucleic acid (TNA, which has a tetrose sugar), gly-
col nucleic acid (GNA, which is based on a glycol
monomer), unlocked nucleic acid (UNA, which lacks the ri-
bose C2′-C3′ bond), flexible nucleic acid (FNA, which lacks
C2′ andO2′), altritol nucleic acid (ANA, which has a D-altri-
tol sugar), hexitol nucleic acid (HNA,which has a 1′,5′-anhy-
drohexitol sugar), and threoninol nucleic acid (ThNA),

FIGURE 2. Structures of XNAs with potential for use in nucleic acid–based therapeutics.
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combine alternative sugars or acyclic moieties with phos-
phodiester linkages and in most cases cross-pair with
DNA and RNA (Fig. 2; Anosova et al. 2016).

FLEXIBLE NUCLEIC ACIDS

The RNA backbone consists of β-D-ribofuranose units that
are linked by phosphodiester moieties. The cyclic sugar
is constrained to adopt one of two conformations,
C3′-endo or C2′-endo. The former is more common and
uniformly adopted in A-form RNA duplexes (Egli 2022).
Removal of C2′ and O2′ yields an acyclic or flexible nucleic
acid (FNA), an XNA, without the constraints of the cyclic
sugar (Fig. 2). The synthesis of this “glycerol” nucleoside
analog was first reported by Schneider and Benner
(1990). FNA contains a single chiral center (C4′) and is an
isostere (i.e., a molecule with similar shape and electronic
properties) of RNA in that it retains six bondsper nucleotide
unit in its backbone. However, incorporation of a single
FNA T into a DNA oligonucleotide caused a loss of more
than 10°C in the thermal stability of the duplex. At first sight
this seemed a disappointing result, and it was tempting to
conclude that thegreater thanexpectedentropic loss upon
formation of a duplex with a single FNA precluded a role in
prebiotic chemistry and perhaps also in therapeutic appli-
cations of nucleic acids. Conformational preorganization
is important for pairing stability; a longer strand composed
entirely of FNA appeared unlikely to form a stable duplex
opposite DNA or RNA in aqueous solution.
Not surprisingly, FNA stability and structure are some-

what insensitive to chirality as demonstrated by analyses
of D- (=S) vs. L- (=R) FNA (Fig. 2). FNA has significantly in-
creased resistance to degradation by snake venom phos-
phodiesterase compared to DNA: A 12-mer of FNA has a
half-life of 110 h compared to 3 min for dT12. Moreover,
an FNA oligomer serves as a template for E. coli DNA po-
lymerase I Klenow fragment (Merle et al. 1995). However,
the stability of duplexes between an FNA A 12-mer and
the complementary DNA strand, dT12, is low (Tm<24°C).
Despite the inability of FNA to form stable duplexes with
DNA, FNA triphosphates are substrates for DNA polymer-
ases such as Therminator, Vent Exo−, and Deep Vent Exo−

(Heuberger andSwitzer 2008; Zhang et al. 2010; for review,
see D’Alonzo et al. 2011). Both (S)- and (R)-FNA triphos-
phates are acceptedwith a slight advantage for the “unnat-
ural” (R)-isomer. In addition, nonenzymatic templated
synthesis of DNA on repeating units of FNA that lack regu-
lar stereochemical configuration was also demonstrated
(Chaput and Switzer 2000).

UNLOCKED NUCLEIC ACID

UNA is an alternative acyclic nucleic acid that lacks
the C2′–C3′ ribose bond (Fig. 2; Nielsen et al. 1995).
Oligonucleotides modified with UNA at their 3′ end are

significantly more stable against 3′-exonuclease degrada-
tion compared to DNA. UNA residues placed in a central
position render an RNA duplex less stable by 4–6 kcal/
mol at 37°C. When placed at the termini, they destabilize
the duplex by 0.5–1.5 kcal/mol. The observed effects are
additive and affect stacking unfavorably (Pasternak and
Wengel 2010). Chimeric UNA and DNA and chimeric
UNA and 2′-fluoroarabino nucleic acid (FANA) strands elic-
it cleavage of complementary RNA by RNase H (Mangos
et al. 2002). UNA monomers in siRNAs reduce off-target
effects (Bramsen et al. 2010). Of note is a particularly favor-
able influence on the reduction of the off-target effect
when a UNA residue is placed at position 7 of the antisense
strand, a position within the seed region (positions 2–8)
while the potency remained high. siRNAs with UNA at po-
sition 1, 2, or 3 of the antisense strand are not phosphory-
lated by the mammalian Clp1 kinase; a 5′ phosphate is
necessary for the interaction of the antisense strand with
Ago2 (Kenski et al. 2010). When 5′-phosphorylated anti-
sense strands containing UNA were synthesized, RNAi ac-
tivity in vitro and in vivo was shown to be comparable to
the parent siRNA when UNA was located at position 1
but not at positions 2 or 3 (Pasternak and Wengel 2011).
Placement of UNA at the 5′ terminus of the sense strand
is expected to preclude its incorporation into RISC, there-
fore eliminating this type of off-target effect.

ORIGIN, DESIGN, AND SYNTHESIS OF CHIRAL
GLYCOL NUCLEIC ACID

GNA is an XNA with a 3′–2′ linked glycol-phosphate back-
bone and is the simplest phosphodiester-based oligomer
building block (Fig. 2). Compared to DNA and RNA, the
GNA backbone is shortened by one atom and hence
one bond (Fig. 3A). Racemic GNA nucleosides were first
synthesized by the groups of Ueda (Ueda et al. 1971)
and Imoto (Seita et al. 1972); enantiomerically pure com-
pounds were synthesized by the Holý group (Holý and
Ivanova 1974). The first GNA phosphoramidites and
GNA-containing oligonucleotides were synthesized by
Cook et al. (1995, 1999) and the Wengel group (Nielsen
et al. 1995). Meggers and colleagues subsequently pub-
lished improved and simplified methods for the synthesis
of GNA phosphoramidites and GNA oligonucleotides
(Zhang et al. 2006; Schlegel andMeggers 2009). To further
reduce the total number of synthetic steps for GNA phos-
phoramidites and allow for a more facile synthesis on a
kilogram scale, our group at Alnylam developed a proce-
dure that allows for the ring opening of enantiopure
DMT-glycidol using protected purine nucleobases
(Scheme 1; Schlegel et al. 2017, 2021). Whereas previous
reports mention failure in the direct alkylation of protected
purines we found that the reaction in the presence ofN,N-
diisopropylethylamine results in the desired products
while preserving the exocylic protecting groups. The
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alkylation of purines in contrast to alkylation using unpro-
tected purines in the presence of NaH (Zhang et al.
2006; Schlegel and Meggers 2009), also resulted in the
formation of a significant amount of the N7 regioisomer,
which required separation from the N9 product via silica
gel chromatography. This method was applied to the py-
rimidine nucleobases resulting in yields that were similar
to those in previous reports utilizing NaH for deprotona-
tion of the nucleobase. Subsequently, the iso-C and iso-
G (S)-nucleoside regioisomers were also synthesized in
a similar manner. Phosphoramidites of both the (S)- and
(R)-isomers of GNA were synthesized from these nucleo-
sides using previously reported procedures (Zhang et al.
2006; Schlegel and Meggers 2009; Schlegel et al. 2017,
2021, 2022). A general overview of the current methods
for the synthesis of various GNA building blocks is summa-
rized in Scheme 1.

GNA PAIRING STABILITY AND SPECIFICITY

(S)-GNA 18-mer oligomers consisting entirely of A or
entirely of T form stable antiparallel duplexes with a Tm
of 63°C (Zhang et al. 2005). A stable duplex did not form

in the parallel orientation. A single T-
T mismatch within the GNA duplex
lowered the Tm to 55°C, and a duplex
with an A-A and a T-T mismatch had a
Tm of 44°C. The thermal stability of
fully complementary GNA 18-mers
exceeds stabilities of the correspond-
ing DNA (Tm=40.5°C) and RNA (Tm=
42.5°C) duplexes by 22.5°C and
20.5°C, respectively! These results
stand in stark contrast to the earlier ex-
periences with duplexes carrying a
single flexible nucleoside monomer
(Schneider and Benner 1990) or oligo-
mers of 1′,2′-seco-DNA, an analog
that lacks the sugar C1′–C2′ bond
(Peng and Roth 2004). Seco-DNA oli-
gonucleotides with sequence (A)10
and (T)10 failed to pair, and the analog
does not cross-pair with DNA. Four-
helix junctions composed of either
all (S)-GNA or all (R)-GNA 18-mers
were also significantly more stable
than the corresponding DNA four-he-
lix junction. The Tm of the latter was
37°C compared to Tms>70°C for
the GNA junctions (Zhang et al. 2008).
The circular dichroism CD spec-

trum of an (S)-GNA duplex has a
strong negative Cotton effect, which
is a characteristic change in optical

rotatory dispersion and/or circular dichroism for an opti-
cally active compound inside its absorption region, at
275 nm; the opposite effect is seen with (R)-GNA.
Similarly, the CD spectra of four-helix junctions derived
from (S)-GNA and (R)-GNA oligomers exhibit mirror im-
age symmetry: The (S)-GNA junction shows a strong neg-
ative peak at 280 nm and the (R)-GNA junction shows a
strong positive peak at 280 nm (Zhang et al. 2008).
(R)-GNA and (S)-GNA oligomers do not pair and neither
cross-pairs with DNA. However, (S)-GNA cross-pairs
with RNA in an antiparallel manner, and the resulting hy-
brid duplex (an 18-mer with an RNA polyU strand) has a
Tm of about 35°C. Thus, it is lower than those of the cor-
responding RNA:RNA (Tm=42.5°C) and (S)-GNA:(S)-
GNA duplexes (Tm of 44°C). In their initial report,
Meggers and coworkers concluded that GNA forms high-
ly stable duplexes of antiparallel strand orientation that
follow the Watson–Crick base-pairing rules (Zhang et al.
2005). However, GNA—the simplest phosphodiester-
based pairing system—had a surprise in store. (R)-GNA
does not form a hybrid duplex with RNA. The initial find-
ing that only (S)-GNA pairs with RNA implied that this iso-
mer would be potentially of interest as an siRNA
modification.

A

B

C

D

FIGURE 3. Structure, conformations, base-pairing, and Ago2 binding of (S)-GNA. (A) RNA-U
and (S)-GNA-T nucleotides. (B) GNA nucleotides adopt both gauche and anticonformations
when incorporated into RNA. (C ) Example of an (S)-GNA-T:RNA-A base pair showing a rotated
nucleobase conformation for the GNA nucleotide (arrow). (D) An (S)-GNA-T residue can seam-
lessly and with optimal geometry replace an RNA nucleotide at position 7 of the antisense
strand RNA bound to human Ago2. The RNA strand assumes a kink at that site that is associ-
ated with Ile-365 of Ago2 and results in unstacking of bases of nucleotides 6 and 7.
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ENZYMATIC SYNTHESIS OF DNA ON GNA
TEMPLATES AND GNA ON DNA TEMPLATES

GNA consists of a 3-carbon unit that is fused with a nucle-
obase and could have been a simple carrier of genetic in-
formation prior to the proposed RNAWorld. The 3-carbon
unit could be contributed by glycerol, glyceraldehyde, or
glycidol. The latter is used to synthesize GNA monomers
(Zhang et al. 2005). From the prebiotic perspective, it is in-
teresting that glycidol can be produced from glycerol car-
bonate in a zeolite-catalyzed reaction (Yoo and
Mouloungui 2001). Further, both GNA self-pairing and
cross-pairing with RNA are stereo-specific, which is of in-
terest in the context of the rise of homochirality in the ori-
gin of life (Tsai et al. 2007).
The A-family DNA polymerase from Bacillus stearother-

mophilus is themostproficient of thosepolymerases tested
in carryingoutDNAsynthesis onaGNA template (Tsai et al.
2007). Remarkably, template-directed synthesis by the B.
stearothermophilus DNA polymerase proceeds despite
the absence of formation of a stable duplex between
GNA and DNA. The synthesis of GNA on DNA templates
appears to be more challenging for existing polymerases
than DNA synthesis on a GNA template. Therminator
DNA polymerase carries out primer extension by incorpo-

rating two GNA residues; however,
extension with additional GNAmono-
mers was much less efficient (Chen
et al. 2009). Based on steady-state ki-
netic experiments, Therminator-cata-
lyzed GNA synthesis was stifled both
by low catalytic rates and weak sub-
strate binding. Attempts to synthesize
GNA on GNA templates were unsuc-
cessful even when the primer and
primer-binding region were com-
posed of DNA. In addition to the high-
er flexibility of the GNA backbone
relative to DNA and RNA, the confor-
mation of the GNA strand is sig-
nificantly different from those of
the natural counterparts, and this
likely limits recognition by DNA
polymerases.

CRYSTAL STRUCTURES OF GNA
DUPLEXES

Crystal structures of three different
GNA duplexes have been deter-
mined at resolutions between 0.97
and 1.83 Å (Fig. 4). The initial 1.3-Å
structure was of the (S)-GNA octamer
3′-g(CGHATHCG)-2′ with two Cu(II)-
mediated hydroxypyridone (H) nucle-

obase pairs (PDB ID 2JJA; Schlegel et al. 2008). Hallmarks
of this so-called M-type helix are 16 residues per helical
turn, a 3.8-Å rise, and 60-Å helical pitch, a twist of 24°,
and an average phosphate-phosphate distance of 5.4 Å.
The structure of the (S)-GNA hexamer GNA 3′-g
(GBrCGCGC)-2′ was determined at 0.97-Å resolution
(PDB ID 2WNA; Schlegel et al. 2010), and the (S)-GNA
octamer 3′-g(CTCBrUAGAG)-2′ structure was solved at
1.83-Å resolution (PDB ID 2XC6; Johnson et al. 2011).
The two latter structures are of the so-called N-type with
an A-form DNA/RNA-like backbone curvature and the fol-
lowing geometric hallmarks: 10 residues per turn, a 2.6-Å
rise, a 26-Å helical pitch, a twist of 36°, and an average
phosphate-phosphate distance of 5.4 Å (Fig. 3).
Individual nucleosides in the backbones of these duplexes
show variations in the torsion angle around the C3′–C2′

bond that either falls into the negative synclinal (sc−) or
the antiperiplanar (ap) range. The torsion angle around
the C2′–C1′ bond is limited to the ap range.
(S)-GNA forms a right-handed duplex with a pro-

nounced x-displacement of base pairs and a strong nega-
tive backbone-base inclination angle (Pallan et al. 2007;
Egli and Pallan 2010). The latter is a fundamental property
of RNA strands in canonical A-form duplexes. The (R)-GNA
duplex has a left-handed helical twist and a positive

SCHEME1. General procedures for the synthesis of (S)-GNA (top) and (R)-GNA (middle) phos-
phoramidites starting from enantiopure glycidol. Various bases and base analogs (B) can be
used to functionalize GNA (bottom). Detailed protocols for syntheses have been reported
(Zhang et al. 2005, 2006; Schlegel and Meggers 2009; Schlegel et al. 2017, 2021).
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backbone-base inclination angle. These observations help
explain how (S)-GNA and RNA can pair, but RNA and
(R)-GNA cannot. However, there are two findings that the
structural data cannot explain. First, in the CD spectra, the
right-handed (S)-GNA duplex displays a strong negative
peak at ∼280 nm; in the same wavelength range, right-
handed DNA and RNA duplexes show a positive signal.
Second, GNA sequences that contain G or C nucleosides
do not cross-pair with RNA (Meggers and Zhang 2010).

CRYSTAL STRUCTURES OF RNA DUPLEXES WITH
SINGLE GNA RESIDUES PER STRAND

To analyze the conformation of GNA in an RNA duplex en-
vironment and to better understand (S)-GNA:RNA pairing
and the lack thereof for (R)-GNA and RNA, we determined
four crystal structures of RNA duplexes with a single GNA
residue per strand. These crystal structures are of
5′-BrCGAA[(S)-GNA T]UCG-3′ (solved to 1.08 Å, PDB ID
5V2H), 5′-CGCGAAU[(S)-GNA T]AGCG-3′ (solved to 1.2
Å, PDB ID 5V1L), 5′-CGCGAABrU[(R)-GNA T]AGCG-3′

(solved to 1.18 Å, PDB ID 5V1K) (Schlegel et al. 2017),
and 5′-CGCG[(S)-GNA A]ABrUUAGCG-3′ (solved to 1.78
Å, PDB ID 7LO9) (Schlegel et al. 2021). These structures
demonstrate the considerable local conformational flexi-
bility of GNA residues inside RNA strands (Fig. 3B). In
the crystal structure of the 12-mer with a single (S)-GNA
T, the trimer containing the modification is observed in

six different conformations with variations in the puckers
of ribonucleotides, backbone torsion angles of the GNA
residue, and the distance between the 3′- and 2′-phos-
phates of the GNA (4.78 to 5.83 Å range; Egli and
Manoharan 2019). Remarkably, in all these structures,
GNA residues assume a conformation with a flipped nucle-
obase relative to the standard base orientation of ribonu-
cleotides (Fig. 3C). Thus, the 5-methyl group of the
(S)-GNA T points into the minor groove; the N6 amino
group of the (S)-GNA A in the duplex containing this resi-
due also points into the minor groove (Fig. 5). It was sur-
prising that this flipped orientation is adopted by both
(S)-GNA and (R)-GNA residues! This peculiar behavior of
GNA does not affect base-pairing between A and T. Thus,
both (S)-GNA T and (R)-GNA T pair with A by forming two
hydrogen bonds, except that it is O2 of the GNA T that is
positioned opposite N6 of A rather than O4 of T (or U) in
a pair formed by DNA (or RNA) (Fig. 5). The (R)-GNA T res-
idue inside the RNAduplex disrupts stacking and base-pair-
ing. In one-half of the duplex formed by the modified, self-
complementary dodecamer, the U adjacent to (R)-GNA T is
inserted into the major groove and establishes a base triple
with the A:(R)-GNAT pair, orphaning the A immediately op-
posite. The presence of a left-handed (R)-GNA residue in-
side the right-handed RNA duplex introduces a kink in the
backbone (Schlegel et al. 2017; Liczner et al. 2021).

The flipped nucleobase orientation of GNA inside RNA
explains why G:C pairs are not tolerated in RNA:(S)-GNA
duplexes. Unlike A and T that can establish two hydrogen
bonds in both theWatson–Crick and reverseWatson–Crick
pairing modes, reverse Watson–Crick G:C pairs have only
two hydrogen bonds, and their formation requires a
sheared orientation of the two bases (Fig. 5). These chang-
es result in inferior stability due to loss of stacking and hy-
drogen bonding, thus precluding G:C pairing between
GNA and RNA. Of note, (S)-GNA:RNA hybrids, even those
that contain only A:T or A:U pairs, are of lower thermal
stability than GNA:GNA and RNA:RNA duplexes (Zhang
et al. 2005). However, it is possible to overcome this limi-
tation by introducing isonucleotides such as iso-C and
iso-G (Fig. 5). Indeed, pairing between GNA and RNA
that involves G and C can be rescued by the introduction
of either (S)-iso-GNACopposite G or (S)-iso-GNAGoppo-
site C (Schlegel et al. 2021).

Probably themost stunning insight from these structures
that revealed a flipped base orientation of GNA bases in-
side an otherwise RNA duplex is that this behavior is not
an exception but rather the rule. Thus, the backbone cur-
vature of (S)-GNA duplexes closely resembles that of A-
form DNA and RNA duplexes. However, base pairs in
the GNA duplex are inverted relative to DNA and RNA;
H-bonding groups such as N6 of A, N4 of C, O6 of G,
and O4 of T map to the “convex surface” of the GNA du-
plex, which corresponds to the shallow minor groove of an
RNAduplex. Conversely, C2 of A, O2 of C and T, andN2 of

FIGURE 4. Crystal structures of (S)-GNA octamer duplexes, PDB ID
2JJA (left) and PDB ID 2XC6 (right), viewed across the two grooves
(top) and along the helical axis (bottom).
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G are located inside the deep “minor groove” of the du-
plex, which corresponds to the deep major groove of an
RNA duplex (Schlegel et al. 2021). This inverted orienta-
tion of base pairs inside the GNA duplex had been over-
looked for 15 years! These structures suggested that a
simple approach to overcome this pairing limitation is
through the utilization of iso base pairs of GNA G and
GNA C (Fig. 5; Scheme 1), which resulted in an improved
thermal stability when paired with complementary RNA
of 2.5°C and 4.6°C, respectively. The enhanced pairing re-
sulted in an siRNA structure more stabilized against nucle-
ase degradation (Schlegel et al. 2021).
Rather than the simpleWatson–Crick pairing system that

it is often referred to, GNA behaves in a unique way by
combining properties of right-handed A-form DNA and
RNA duplexes (backbone geometry) and the left-handed
Z-DNA duplex (base-pair orientation). Incidentally, this
also helps rationalize the surprising negative Cotton effect
at 280 nm seen in CD spectra of right-handed (S)-GNA du-
plexes (Zhang et al. 2005) that is reminiscent of Z-DNA.
Nevertheless, our attempts to crystallize Z-DNA duplexes
of sequence 5′-d(CGCGCG)-3′ with a single left-handed
(R)-gC residue per strand have not resulted in viable
crystals.

IMPLICATIONS OF SHORT
INTERNUCLEOTIDE LINKAGES:
GNA AND TNA

An additional puzzling finding con-
cerns the lack of pairing between
GNA and TNA (Yang et al. 2007),
which both feature a five-atom repeat
unit that is one atom (or bond) shorter
relative to DNA and RNA (Fig. 2). The
threose sugars uniformly adopt a C4′-
exo pucker in TNA:TNA duplexes
(Ebert et al. 2008) and inside A-form
(Pallan et al. 2003) and B-form DNA

duplexes (Wilds et al. 2002) as well as in a TNA strand
paired opposite DNA (Chim et al. 2017). However, unlike
GNA, TNA does not exhibit the flipped nucleobase orien-
tation, and its right-handed backbone curvature, nucleo-
base orientation, and backbone-base inclination angle
are similar to those of RNA. Because of these features,
TNA pairs stably with itself, and it cross-pairs with both
DNA and RNA (Schöning et al. 2000) but not with GNA.
In fact, if one models a nonrotated nucleobase orientation
of GNA by changing the torsion angles around the C2′–
C1′ and C1′–N1 bonds of the GNA residue to flip the thy-
mine base to resemble that of TNAwithout generating any
eclipsed bonds, the distance between bases is <2.5 Å on
average (Fig. 6). This suggests that in the standard orienta-
tion, flexing of the GNA backbone cannot push apart the
two bases to the optimal stacking distance of ∼3.4 Å,
thus resulting in the preferred flipped base orientation.

IMPACT OF GNA MODIFICATION ON siRNA
POTENCY

The likelihood that GNA would improve RNAi-mediated
gene silencing was grounded in several observations

A B

FIGURE 5. Various base-pairing modes between GNA and RNA contrasted with standard Watson–Crick base pairs.

A B

FIGURE 6. (A) Superimposed (S)-GNAT and TNAT inside RNA, demonstrating that GNAwith
the thymine base flipped (i.e., matching the TNA base orientation) results in a clash with the
adjacent base (suboptimal stacking). (B) Crystal structure of RNA with an incorporated (S)-
GNA T residue that displays the rotated orientation of the thymine base.
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regarding the favorable performance of chemically modi-
fied siRNAs containing acyclic, thermally destabilizing nu-
cleotides. Modifications can enhance the chemical and
metabolic stability of siRNA and increase down-regulation
via diverse mechanisms (Kenski et al. 2010; Laursen et al.
2010; Kamiya et al. 2014; Alagia et al. 2015). Modulating
the thermal stability of the siRNA duplex via site-specific
modification affects the discrimination between the strands
(i.e., antisense vs. sense) when the siRNA duplex is loaded
into Ago2. The enzyme favors loading the 5′ end of the
strand from the end of the duplex that exhibits lower ther-
mal stability, and modification can enhance strand bias
(Khvorova et al. 2003; Sano et al. 2008; Bramsen et al.
2009; Addepalli et al. 2010). Another potentially beneficial
consequence of introducing a thermally destabilizing mod-
ification into an siRNA duplex is that this can facilitate strand
separation necessary for an active RISC (Meister et al. 2004).

Incorporation of (S)-GNA or (R)-GNA residues into an
RNA duplex strongly lowers the thermal stability with the ef-
fect more pronounced for the (R)-isomer (a reduction of be-
tween 7.6°C and 18.2°C) and is strongest in the case of
incorporation of a single GNA G:C pair [reductions of
20.1°C for (S)-GNA and 27.6°C for (R)-GNA] (Schlegel
et al. 2017). A single (S)- or (R)-GNA residue at the 3′ end
of a strand also protects against degradation from the 3′-
end by snake venom phosphodiesterase to a greater extent
than a PS-linkage in place of the last phosphate. When
placed at the penultimate position at the 3′ end, GNA
does not shield against degradation, but combining the
GNA and PS modifications resembles the effect seen
when placing two (S)- or (R)-GNA residues at the 3′ end.
Optimal protection is achieved by placing two (S)-GNA res-
idues combined with a PS linkage at the 3′ terminus:
Relative to the half-life of the oligonucleotide with two Ts
at the 3′ end (<1 h), the half-life of the (S)-GNA- and PS-pro-
tected oligonucleotide was 27.5 h (Schlegel et al. 2017).

To investigate the positional impact of GNA incorpora-
tion on in vitro silencing activity, siRNAs with single (S)-
GNA residues along the antisense and sense strands of
an siRNA targeting mouse Ttr were tested in a cell-based
assay (Fig. 7). Compared to the parent siRNA, GNA was
not well tolerated in the antisense strand at positions 1,
2, or 4. The siRNAwith aGNA at position 3 of the antisense
strand had similar activity to the parent siRNA. GNA at po-
sitions 6 and 7 of the antisense strand improved activity rel-
ative to the parent (Schlegel et al. 2017). The in vitro
potency of the siRNAwith an (S)-GNA base pair at position
7 of the antisense strand was approximately threefold bet-
ter than that of the parent. Importantly, the activity was
maintained in mice following subcutaneous injection of
this siRNA conjugated to GalNAc (Schlegel et al. 2017).

The increased potency of siRNA with an (S)-GNA residue
incorporated at position 7 of the antisense strand is particu-
larly noteworthy. Inspection of crystal structures of Ago2
bound either to a microRNA (miR-20a) single strand (PDB
ID 4F3T; Elkayam et al. 2012) or a seed duplex (PDB ID
4W5T; Schirle et al. 2014) revealed that the miRNA and
the antisense strand of the siRNA have kinks between posi-
tions 6 and 7; this kink is particularly pronounced in the
miRNA complex (Fig. 8). Bending or kinking of the nucleic
acid sugar-phosphate backbone results in compressed in-
tra-strand phosphate-phosphate distances. In the Ago2
complexes the phosphate-phosphate distance at the site
of the kink is only 5.5 Å (Schlegel et al. 2017). This distance
is considerably shorter than the distance between adjacent
phosphate groups in an A-form duplex, but the same as
the distance between the 3′- and 2′-phosphate groups in
GNA (Fig. 3B). We speculate that the enhanced potency
of siRNAs with (S)-GNA at position 7 of the antisense strand
isdue to themodification facilitating thekink that is imposed
by Ago2 binding (Fig. 3D; Schlegel et al. 2022). Favorable
effects by GNA modification on RNAi-induced silencing

FIGURE 7. Position-dependent effect of (S)-GNA on in vitro potency of siRNA-mediated silencing of the Ttr gene in an in vitro assay; antisense
(guide) strand on left and sense (passenger) strand on right.
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may therefore be the result of two synergistic effects: ther-
mal rebalancing and conformational preorganization.

GNA MODIFICATION OF siRNAS CAN MITIGATE
RNAi OFF-TARGET EFFECTS

Preclinical mechanistic studies have suggested that liver
hepatotoxicity of GalNAc-siRNA conjugates is largely driv-
en by seed-mediated off-target effects (Janas et al. 2018).
We were motivated by the aforementioned data and other
previous reports to assess the potential of GNA tomitigate
seed-mediated repression of off-target gene transcripts, a
common limitation in the development of some siRNAs
(Janas et al. 2018, and references cited). In such scenarios,
XNA modification of siRNAs can provide a straightforward
seed-pairing destabilization approach to limit the ability of
antisense strand-loaded Ago2 to engage through seed-
only binding to off-target gene transcripts. Unlike similar
approaches using, for example, UNA to mitigate off-target
binding, which has only been demonstrated in vitro
(Bramsen et al 2010), GNA has been shown to improve
the off-target profile both in vitro and in vivo. A single
GNA modification in the seed region results in a six- to
eightfold improved therapeutic index in rats (Schlegel
et al. 2022). Here again, the unique structure of GNA incor-
porated at position 7 may disfavor seed-only base-pairing
of the Ago2-antisense strand with off-target mRNAs but al-
low on-target activity through full-length pairing of the
antisense strand and the on-target mRNA. This approach
and class of siRNAs, featuring high metabolic stability,
long duration, and high specificity, was termed ESC+
(Enhanced Stability Chemistry Plus).

CLINICAL STATUS OF GNA-MODIFIED (ESC+) RNAi
THERAPEUTICS

Clinical experiencewith GalNAc-siRNAs to date has shown
that these potential therapeutics elicit a robust and dose-
responsive silencing of the intended target in the liver
and are generally well-tolerated. Two siRNAs, ALN-AAT
(targeting Alpha-1 antitrypsin gene) and ALN-HBV (target-
ing Hepatitus B virus), had dose-dependent, transient, and
asymptomatic liver enzyme elevations in a subset of pa-
tients in the clinic. These transient elevations in liver en-
zymes appeared to be the result of a sequence-specific
effect since other development candidates with a similar
chemistry and design had not demonstrated such liver en-
zymeelevations (Schlegel et al. 2022). A similar observation
was made in preclinical rodent studies where hepatotoxic-
ity was deemed the result of sequence and not chemistry.
In addition, the timing of liver function test (LFT) increases
in the clinic coincided with the point at which maximal
knockdown and RISC loading occurred, further suggestive
of a seed-mediated, off-target effect. Presenting a unique
opportunity to evaluate the ability of GNA substitution to

impact efficacy and safety, we redesigned ALN-AAT and
ALN-HBV to have a single (S)-GNA in the seed region, pro-
viding novel candidates ALN-AAT02 and ALN-HBV02, re-
spectively. These two candidates showed an improved
preclinical safety profile and were subsequently evaluated
in a phase 1 study in healthy volunteers. Neither siRNA, in
contrast to the respective parent siRNAs of the same se-
quence, caused liver enzyme elevations at the highest
dose tested (6 or 10 mg/kg), providing positive human
proof that incorporation of a single GNA improves safety
of siRNAand representing a rare example of clinical studies
with nucleic acid–based therapeutics incorporating an
XNA modification and designated as the ESC+ approach
(Schlegel et al. 2022). Several other ESC+ candidate
siRNAs that contain GNA residues are currently in clinical
development, with the most advanced candidates current-
ly in phase II trials.

CONCLUSIONS

The unique properties of (S)-GNA have been exploited to
improve the clinical profile of siRNA.GNA is a thermally de-
stabilizing modification due to its glycol-phosphate back-
bone, which is shorter than that of DNA and RNA. GNA is
well tolerated at most positions of the antisense and sense
strands when tested individually. Most importantly, when
placed at position 7 of the antisense strand, (S)-GNA effi-
ciently mitigates off-target effects. At this position, (S)-
GNA is hypothesized to have two synergistic effects that
benefit off-targetmitigation in the context of the seedcom-
plexwith RISCAgo2: seed regiondestabilization and apre-
organized kinked conformation (Schlegel et al. 2017, 2021,
2022). Modeling studies support this hypothesis, but a de-
tailed picture of Ago2–GNA interactions is missing. Goals
of our laboratories are to solve crystal and solution struc-
tures of Ago2 in complex with GNA-modified duplexes

FIGURE 8. View of the crystal structure of Ago2 bound to an RNA du-
plex (PDB ID 4W5T) kinked between positions 6 and 7 of the antisense
(guide) strand (asterisk). Ago2 domains are highlighted and labeled,
and the siRNA (antisense and sense) strands are colored in red and
blue, respectively. Antisense strand residues 1 to 12 are numbered,
and the 5′-phosphate group is highlighted in black and ball-and-stick
mode.
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and antisense strands. The synthesis of (S)-GNA, which re-
quires no protection and deprotection of the free hydroxyl
group, is simpler than syntheses of UNA and 2′–5′ linked
RNA, making it attractive for use in clinical candidates. In
fact, (S)-GNA was the first XNA to be tested clinically in a
therapeutic that acts through an RNAi mechanism. Future
studies will focus on an assessment of the effect of placing
multiple GNAs in the same strand of siRNAs and an evalu-
ation of pharmacology and metabolic stability.
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