Organic Letters

Synthesis and Biophysical Characterization of RNAs Containing 2'-Fluorinated Northern Methanocarbacyclic Nucleotides

Masaaki Akabane-Nakata,[†] Pawan Kumar,[†]® Rajat S. Das,[†]® Namrata D. Erande,[†] Shigeo Matsuda,[†] Martin Egli,[‡]® and Muthiah Manoharan^{*,†}®

[†]Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States

[‡]Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States

Supporting Information

ABSTRACT: 2'-Fluorinated *Northern* methanocarbacyclic (2'-F-NMC) nucleosides and phosphoramidites, based on a bicyclo[3.1.0]hexane scaffold bearing all four natural nucleobases (U, C, A, and G), were synthesized to enable exploration of this novel nucleotide modification related to the clinically validated 2'-deoxy-2'-fluororibonucleotides (2'-F-RNA). Biophysical properties of the 2'-F-NMC-containing oligonucleotides were evaluated. A duplex of 2'-F-NMC-modified oligonucleotide with RNA exhibited thermal stability similar to that of the parent RNA duplex, 2'-F-NMC-modified oligonucleotides had higher stability against 5'- and 3'-exonucleolytic degradation than the corresponding oligonucleotides modified with 2'-F-RNA, and 2'-F-NMC-modified oligonucleotides exhibited higher lipophilicity than the corresponding RNA oligonucleotides as well as those modified with 2'-F-RNA.

herapeutics based on RNA interference (RNAi) have great potential for treating human diseases. Both US FDA and EMA have recently approved the first small interfering RNA (siRNA) drug, ONPATTRO (patisiran), for treatment of polyneuropathy caused by hereditary transthyretin-mediated amyloidosis.¹ The oligonucleotides used in oligonucleotides based therapeutics require use of unnatural nucleotide building blocks to stabilize the agents against nuclease degradation, to enhance cell-membrane permeability, and to limit immune responses.² The 2'-deoxy-2'-fluororibonucleotide (2'-F-RNA, Figure 1A) and 2'-O-methyl (2'-OMe) modifications have been used to modify siRNAs,³⁻⁵ antisense oligonucleotides,⁶, aptamers,⁸ microRNAs,⁹ and ribozymes.¹⁰ Incorporation of 2'-F-RNA and 2'-O-Me residues stabilizes an A-form RNA duplex.^{4,11} Specifically, 2'-F ribo-substitution preorganizes the sugar into a C3'-endo or North conformation and hence reduces the entropic penalty for the formation of the A-form duplex, and increases base stacking and Watson-Crick hydrogen-bond stabilities due to its electron-withdrawing power.¹¹ Furthermore, 2'-F-RNA-modified siRNAs have reduced immune stimulation and improved activity in vitro and *in vivo* compared to unmodified siRNA,⁴ and are in clinical development. The 2'-F-RNA-modified oligonucleotides are, however, more sensitive to nucleolytic degradation than other 2'-modified oligonucleotides; moreover, these monomers are recognized, albeit poorly, by human RNA polymerases at high concentrations.^{12,13} Hence, chemically modified building blocks that retain the advantages of 2'-F-RNA with additional features to overcome these limitations have the potential to

(D) Model of a hybrid dupex between 2'-F-NMC and RNA

Figure 1. (A–C) Structures of (A) 2'-F-RNA, (B) NMC, and (C) 2'-F-NMC. (D) Model of a hybrid duplex between 2'-F-NMC and RNA constructed using the program UCSF Chimera; 2'-F-NMC residues have an idealized C2'-*exo* pucker with an axial 2'-fluorine.

improve pharmacological properties of oligonucleotides. A number of fluorine-containing building blocks have been

Received: December 31, 2018 Published: March 20, 2019

ACS Publications © 2019 American Chemical Society

Organic Letters

synthesized and evaluated in the context of oligonucleotidebased therapeutics.^{14–29} However, to the best of our knowledge, none of these modifications have been made with all four nucleobases. As nucleotide pharmacology in a therapeutic oligonucleotide like siRNA depends on both sequence and position, it is necessary to have all four nucleosides with same ribosugar modification to evaluate its therapeutic potential.³⁰

Conformationally restricted nucleic acids bearing bicyclic or tricyclic scaffolds that exhibit high affinity for complementary RNA are also being widely explored as potential therapeutic oligonucleotide modifications.^{31,32} Nucleosides with a carbocyclic bicyclo[3.1.0]hexane system, here referred to as *Northern* methanocarbacyclic (NMC) nucleosides, are constrained to an RNA-like sugar pucker (Figure 1B).^{33–38} The bicyclic NMC sugar is predicted to adopt a pseudoboat C2'*exo* conformation due to the methylene bridge between the C4' and C6' positions. Consequently, NMC-modified oligonucleotides form more stable duplexes with RNA than do unmodified DNA.

Jung and co-workers recently synthesized thymidine analogs 2'-F-NMC T (Figure 1C) and *ara*-2'-F-NMC T and oligonucleotides containing these building blocks.¹⁸ Deoxy-oligonucleotides containing 2'-F-NMC T have higher RNA binding affinity than oligonucleotides containing 2'-deoxy-2'-fluoro uridine or nonfluorinated NMC thymidine.¹⁹ This duplex stabilization is presumed to result from stabilization of Watson–Crick hydrogen-bonding and base-stacking interactions due to the 2'-fluoro incorporation and demonstrates the potential of 2'-F-NMC analogs in oligonucleotide-based therapeutics.

Our laboratory has systematically evaluated the role of chemical modifications in siRNA activity. To assess 2'-F-NMC analogs in terms of their sequence- and position-dependent RNAi activity, we required all RNA nucleobase analogs. Here, we report the synthesis of 2'-F-NMC phosphoramidites bearing the four natural RNA nucleobases (i.e., A, U, G, C) from a common starting material in a convergent approach. We also report the binding affinities to a target RNA and susceptibilities to exonuclease degradation of oligonucleotides containing 2'-F-NMC.

The 2'-F-NMC U and 2'-F-NMC C phosphoramidites were synthesized as depicted in Scheme 1. The starting amine 1 was prepared according to the procedure reported by Jung et al.¹⁸ and was coupled with 3-methoxyacryloyl isocyanate and cyclized under acidic conditions to afford the uridine derivative 2.^{39,40} The 5'-OH group of the nucleoside 2 was protected with 4,4'-dimethoxytriphenylmethyl chloride (DMTrCl) to give compound 3. Subsequent phosphitylation of the 3'-OH group of 3 gave the desired phosphoramidite 4. For the synthesis of 2'-F-NMC C, fully protected nucleoside 5 was obtained by tert-butyldimethylsilyl (TBS) protection of 3. Compound 5 was then converted into the cytidine derivative 6 by reacting with 1,2,4-triazole in the presence of Et₃N and POCl₃, followed by treatment with aqueous NH₃. The exocyclic amine of 6 was benzoylated using benzoyl chloride (BzCl), and the resulting protected cytidine derivative 7 was treated with tetra-n-butylammonium fluoride (TBAF) to obtain alcohol 8. Phosphitylation of 8 gave the desired phosphoramidite 9.

To synthesize the purine analogs, Jung et al. attempted to introduce the *N*-benzoyladenine base into the unsubstituted enone derivative of the NMC scaffold by 1,4-addition. The Scheme 1. Synthesis of 2'-F-NMC U and C Amidites

yield of the reaction for this adenine precursor was low, and synthesis of 2'-F-NMC purine analogs was not pursued.¹⁸ This prompted us to explore alternate routes. Nencka et al. reported a one-pot build-up procedure leading to 6-chloro- or 2-amino-6-chloropurines, which are, respectively, adenosine and guanosine precursors, from a primary amine.⁴¹ Marquez et al. also achieved excellent yields of bicyclo[3.1.0]hexane carbocyclic nucleosides, which involve 6-chloropurines on a primary amine, using a microwave reactor.⁴² Therefore, we evaluated the synthesis of the 2'-F-NMC purine phosphoramidites from the starting amine 1.¹⁸ As shown in Scheme 2, the reaction of 1 with 4,6-dichloro-5-formamidopyrimidine followed by cyclization of the formamido intermediate 10 in the presence of diethoxymethyl acetate gave the 6chloropurine derivative 11 in 54% yield over two steps. Ammonolysis of the compound 11 using a microwave reactor

Scheme 2. Synthesis of 2'-F-NMC A Amidite

Organic Letters

produced the desired adenine nucleoside 12 in 91% yield. The amino group was then protected with BzCl to furnish the dibenzoyl derivative 13 (19%) and monobenzoyl derivative 14 (65%). Compound 13 was readily converted to 14 by treatment with aqueous NH₃ in THF. The silyl protection was then removed by treating 14 with Et₃N·3HF at 55 °C, to obtain diol 15 in 98% yield. Subsequent dimethoxytritylation of the 5'-OH followed by phosphitylation of 16 yielded the desired phosphoramidite 17 (82%).

For the synthesis of 2'-F-NMC G, various conditions were evaluated for the preparation of the 2-amino-6-chloropurine intermediate 19 using the microwave-assisted reaction of the amine 1 with 2-amino-4,6-dichloro-5-formamidopyrimidine (Table 1). The reaction in 1,4-dioxane at 100 $^{\circ}$ C led to only

the intermediate 18 as a mixture of rotamers (entry 1). By heating at 160 °C in toluene, the intermediate 18 and the desired product 19 were obtained in 70% and 24% yield, respectively (entry 2). The yield of 19 was improved to 40% by changing the solvent to *n*-BuOH (entry 3). However, longer reaction times resulted only in substitution of 6-Cl groups by n-BuOH. Attempts to cyclize intermediate 18 in 1,4-dioxane by heating under microwave conditions resulted in disappointingly low yields (17%). The presence of the bulky 5'-O-TBS group may hinder imidazole ring closure, resulting in poor yields. Attempts to use diethoxymethyl acetate for the cyclization yielded a complex mixture, including 19, as shown by LC-MS (data not shown). 2'-F-NMC G was eventually synthesized from the 2-amino-6-chloropurine derivative 19 by reacting with 3-hydroxypropionitrile in the presence of NaH (Scheme 3). Standard protection of exocyclic amine using isobutyryl chloride afforded protected nucleoside 21 (95%). Desilylation using Et₃N·3HF gave diol 22 in 98% yield. Dimethoxytritylation gave DMTr-protected compound 23 (66%), which was converted to the corresponding phosphoramidite 24 in 61% yield.

To gauge the effect of modified nucleotides on RNA affinity, the 2'-F-NMC modifications were incorporated into 10-mer and 12-mer oligoribonucleotides via standard solid-phase synthesis (see Supporting Information). The 2'-F-NMC-modified oligonucleotides were mixed with complementary RNA in PBS buffer, and the melting temperatures (T_m) were determined (Table 2). Modified duplexes containing a single 2'-F-NMC nucleotide at the center showed a decrease of at most 1.3 °C in the melting temperature compared to the unmodified duplex (Table 2, Entry 1–4). In a similar context, incorporation of 2'-F-RNA-modified nucleotides resulted in

Scheme 3. Synthesis of 2'-F-NMC G Amidite

slight improvements in the thermal stability. These experiments demonstrate that the 2'-F-NMC modification is well tolerated in an RNA duplex. The slight loss in thermal stability may prove advantageous in RNAi-based applications where high binding affinities in the seed region can induce undesirable off-target effects.⁴³ Importantly, a 10-mer duplex with six 2'-F-NMC nucleotides in the center displayed thermal stability comparable to that of the unmodified dsRNA (entry 5) suggesting that this modification is very well accommodated in an RNA:RNA duplex.

Table 2. UV Melting Temperatures of Modified Duplexes

entry	duplex	$T_{m}^{a} (\Delta T_{m}) (^{\circ}C)^{b}$ F-NMC 2'-F					
1	5'-UACAG <mark>U</mark> CUAUGU 3'-AUGUCAGAUACA	53.4 (-0.2)	54.1 (0.5)				
2	5'-UACAGUCUAUGU 3'-AUGUC <mark>A</mark> GAUACA	53.4 (-0.2)	54.2 (0.6)				
3	5'-UACAGU <mark>C</mark> UAUGU 3'-AUGUCAGAUACA	52.3 (-1.3)	54.3 (0.7)				
4	5'-UACAGUCUAUGU 3'-AUGUCA <mark>G</mark> AUACA	53.1 (-0.5)	54.5 (0.9)				
5°	5'-GC <mark>GAUCUC</mark> AC 3'-CGCUAGAGUG	57.4 (-0.2)	65.3 (7.7)				

 ${}^{a}T_{\rm m}$ values were obtained in PBS (pH 7.4) using 2.0 μ M concentrations of each strand. Red letters indicate sites of modification. ${}^{b}\Delta T_{\rm m}$ is the difference in melting temperature between the duplex with the modified strand and the unmodified reference duplex (5'-UACAGUCUAUGU-3':3'-AUGUCAGAUACA-5', $T_{\rm m}$ = 53.6 °C). ^cUnmodified reference duplex for entry 5 is 5'-GCGAU-CUCAC-3':3'-CGCUAGAGUG-5' with $T_{\rm m}$ = 57.6 °C.

Next, the thermal stability of duplexes carrying 2'-F-NMC base pairs was determined (Table S2). Interestingly, in this context the U^{F-NMC}-A^{F-NMC} base pair was better accommodated (a drop of only 0.4 °C compared to unmodified RNA) than a C^{F-NMC}-G^{F-NMC} base pair (a drop of 2.2 °C compared to unmodified RNA).

The global conformations of RNA duplexes with one or two 2'-F-NMC nucleotides were evaluated using circular dichroism (CD) spectroscopy. The CD spectra of modified duplexes were comparable to that of the unmodified RNA and featured a strong positive band at around 260 nm and a negative band

at around 210 nm characteristic of an A-form duplex (Figure 2). This indicates that the 2'-F-NMC modification does not significantly distort the global geometry of an RNA:RNA duplex.

Figure 2. CD spectra of 2'-F-NMC-modified RNA and complementary RNA (cRNA) duplex at 15 $^{\circ}$ C in PBS (pH 7.4). See Table S3 for the details of the duplexes.

To determine the effect of the 2'-F-NMC modification on degradation of oligonucleotides by exonucleases, we incorporated 2'-F-NMC C (C^{F-NMC}) or 2'-F-RNA C (C^F) at the terminus or at the penultimate position of a dT oligonucleotide. The oligonucleotide modified at the 3' end with 2'-F-NMC ($dT_{19}C^{F-NMC}$) was more resistant to degradation by snake venom phosphodiesterase (SVPD) than was the oligonucleotide modified with 2'-F-RNA (Figure 3A). The

Figure 3. HPLC quantification of indicated full-length oligonucleotide after incubation with (A) SVPD and (B) PDE-II as a function of time. For $dT_{18}C^{\text{F-NMC}}dT$, the percentage of 19-mer $dT_{18}C^{\text{F-NMC}}$ remaining is plotted.

half-life of the 2'-F-NMC-modified oligonucleotide was around 90 min, whereas the half-life of $dT_{19}C^F$ was 15 min. The 3'-terminal dT in the oligonucleotide with the 2'-F-NMC residue at the penultimate position relative to the 3' end $(dT_{18}C^{F-NMC}dT)$ was lost within an hour; however, $dT_{18}C^{F-NMC}$ had a half-life of 170 min, whereas $dT_{18}C^FdT$ and $dT_{19}C^F$ had half-lives of around 15 min.

Oligonucleotides modified at the 5' ends were incubated with the 5'-exonuclease phosphodiesterase II (PDE-II). Unlike the 3'-end-modified $dT_{18}C^{F-NMC}dT$, removal of the 5'-terminal dT was not observed when $dTC^{F-NMC}dT_{18}$ was incubated with PDE-II. Rather, the full-length 20-mer oligonucleotide with a penultimate C^{F-NMC} was very stable with a half-life of 5 h (Figure 3B). Surprisingly, $C^{F-NMC}dT_{19}$ was degraded rapidly with a half-life of 12 min. This indicates that 2'-F-NMC modification improves stability at the penultimate position. Nevertheless, the 2'-F-NMC-modified oligonucleotides were more stable than 2'-F-RNA-modified oligonucleotides, as $C^F dT_{19}$ and $dTC^F dT_{18}$ were completely degraded by the first time point (1 h) after addition of PDE-II.

In summary, we present efficient routes for convergent synthesis of the four 2'-F-NMC ribonucleosides. 2'-F-NMC residues are well accommodated in double-stranded RNAs and do not alter the global structure of the duplex. 2'-F-NMC oligonucleotides are more resistant to nuclease degradation than are oligonucleotides modified with 2'-F-RNA. The higher lipophilicity of an oligonucleotide containing 2'-F-NMC residues compared to that with 2'-F-RNA residues (Figure S2) may result in improved cellular uptake and endosomal release of RNAs.⁴⁴ Having access to all four phosphoramidites will allow exploration of the full potential of 2'-F-NMC modification in therapeutic oligonucleotides such as siRNAs. These studies are ongoing in our laboratories.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b04153.

Experimental, compound characterization, and assays (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: mmanoharan@alnylam.com.

ORCID [®]

Pawan Kumar: 0000-0001-7936-4613 Rajat S. Das: 0000-0003-3169-6218 Martin Egli: 0000-0003-4145-356X Muthiah Manoharan: 0000-0002-7931-1172

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We dedicate this work to our long-time advisor, Professor Michael E. Jung (UCLA), for his numerous contributions to chemistry, medicinal chemistry, and nucleic acid chemistry. We are grateful to the Alnylam Research Group for their support, Drs. Ivan Zlatev and K.G. Rajeev for critical reading of the manuscript, Dr. Anne Noronha (Concordia University) for CD spectral measurements, and Ms. Nikki M. Ramos for excellent administrative help.

REFERENCES

(1) https://www.fda.gov/newsevents/newsroom/ pressannouncements/ucm616518.htm.

(2) Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D. W. *Nat. Chem. Biol.* **2006**, *2*, 711.

(3) Allerson, C. R.; Sioufi, N.; Jarres, R.; Prakash, T. P.; Naik, N.; Berdeja, A.; Wanders, L.; Griffey, R. H.; Swayze, E. E.; Bhat, B. *J. Med. Chem.* **2005**, *48*, 901.

(4) Manoharan, M.; Akinc, A.; Pandey, R. K.; Qin, J.; Hadwiger, P.; John, M.; Mills, K.; Charisse, K.; Maier, M. A.; Nechev, L.; Greene, E. M.; Pallan, P. S.; Rozners, E.; Rajeev, K. G.; Egli, M. Angew. Chem., Int. Ed. 2011, 50, 2284.

(5) Pallan, P. S.; Greene, E. M.; Jicman, P. A.; Pandey, R. K.; Manoharan, M.; Rozners, E.; Egli, M. *Nucleic Acids Res.* **2011**, *39*, 3482.

(6) Kawasaki, A. M.; Casper, M. D.; Freier, S. M.; Lesnik, E. A.; Zounes, M. C.; Cummins, L. L.; Gonzalez, C.; Cook, P. D. J. Med. Chem. **1993**, 36, 831.

(7) Monia, B. P.; Lesnik, E. A.; Gonzalez, C.; Lima, W. F.; McGee, D.; Guinosso, C. J.; Kawasaki, A. M.; Cook, P. D.; Freier, S. M. *J. Biol. Chem.* **1993**, *268*, 14514.

(8) Ng, E. W.; Shima, D. T.; Calias, P.; Cunningham, E. T., Jr.; Guyer, D. R.; Adamis, A. P. Nat. Rev. Drug Discovery 2006, 5, 123.

(9) Davis, S.; Propp, S.; Freier, S. M.; Jones, L. E.; Serra, M. J.; Kinberger, G.; Bhat, B.; Swayze, E. E.; Bennett, C. F.; Esau, C. Nucleic Acids Res. **2009**, *37*, 70.

(10) Pieken, W. A.; Olsen, D. B.; Benseler, F.; Aurup, H.; Eckstein, F. Science **1991**, 253, 314.

(11) Patra, A.; Paolillo, M.; Charisse, K.; Manoharan, M.; Rozners, E.; Egli, M. Angew. Chem., Int. Ed. 2012, 51, 11863.

(12) Peng, C. G.; Damha, M. J. Can. J. Chem. 2008, 86, 881.

(13) Arnold, J. J.; Sharma, S. D.; Feng, J. Y.; Ray, A. S.; Smidansky, E. D.; Kireeva, M. L.; Cho, A.; Perry, J.; Vela, J. E.; Park, Y.; Xu, Y.;

E. D.; Kneeva, M. L.; Cho, A.; Perry, J.; Vela, J. E.; Park, T.; Xu, T.; Tian, Y.; Babusis, D.; Barauskus, O.; Peterson, B. R.; Gnatt, A.; Kashlev, M.; Zhong, W.; Cameron, C. E. *PLoS Pathog.* **2012**, *8*, No. e1003030.

(14) Egli, M.; Pallan, P. S.; Allerson, C. R.; Prakash, T. P.; Berdeja, A.; Yu, J.; Lee, S.; Watt, A.; Gaus, H.; Bhat, B.; Swayze, E. E.; Seth, P. P. J. Am. Chem. Soc. **2011**, 133, 16642.

(15) Seth, P. P.; Yu, J.; Jazayeri, A.; Pallan, P. S.; Allerson, C. R.; Ostergaard, M. E.; Liu, F.; Herdewijn, P.; Egli, M.; Swayze, E. E. J. Org. Chem. 2012, 77, 5074.

(16) Pallan, P. S.; Yu, J.; Allerson, C. R.; Swayze, E. E.; Seth, P.; Egli, M. Biochemistry **2012**, *51*, *7*.

(17) Seth, P. P.; Pallan, P. S.; Swayze, E. E.; Egli, M. ChemBioChem 2013, 14, 58.

(18) Jung, M. E.; Dwight, T. A.; Vigant, F.; Ostergaard, M. E.; Swayze, E. E.; Seth, P. P. Angew. Chem., Int. Ed. 2014, 53, 9893.

(19) Ostergaard, M. E.; Dwight, T.; Berdeja, A.; Swayze, E. E.; Jung, M. E.; Seth, P. P. J. Org. Chem. **2014**, 79, 8877.

(20) Istrate, A.; Medvecky, M.; Leumann, C. J. Org. Lett. 2015, 17, 1950.

(21) Martinez-Montero, S.; Deleavey, G. F.; Dierker-Viik, A.; Lindovska, P.; Ilina, T.; Portella, G.; Orozco, M.; Parniak, M. A.; Gonzalez, C.; Damha, M. J. *J. Org. Chem.* **2015**, *80*, 3083.

(22) Martinez-Montero, S.; Deleavey, G. F.; Martin-Pintado, N.; Fakhoury, J. F.; Gonzalez, C.; Damha, M. J. ACS Chem. Biol. 2015, 10, 2016.

(23) Kel'in, A. V.; Zlatev, I.; Harp, J.; Jayaraman, M.; Bisbe, A.; O'Shea, J.; Taneja, N.; Manoharan, R. M.; Khan, S.; Charisse, K.; Maier, M. A.; Egli, M.; Rajeev, K. G.; Manoharan, M. J. Org. Chem. 2016, 81, 2261.

(24) Ostergaard, M. E.; Nichols, J.; Dwight, T. A.; Lima, W.; Jung, M. E.; Swayze, E. E.; Seth, P. P. *Mol. Ther.-Nucleic Acids* 2017, *7*, 20.
(25) Istrate, A.; Katolik, A.; Istrate, A.; Leumann, C. J. *Chem. - Eur. J.* 2017, *23*, 10310.

(26) Malek-Adamian, E.; Guenther, D. C.; Matsuda, S.; Martinez-Montero, S.; Zlatev, I.; Harp, J.; Burai Patrascu, M.; Foster, D. J.; Fakhoury, J.; Perkins, L.; Moitessier, N.; Manoharan, R. M.; Taneja, N.; Bisbe, A.; Charisse, K.; Maier, M.; Rajeev, K. G.; Egli, M.; Manoharan, M.; Damha, M. J. *J. Am. Chem. Soc.* **2017**, *139*, 14542.

(27) Harp, J. M.; Guenther, D. C.; Bisbe, A.; Perkins, L.; Matsuda, S.; Bommineni, G. R.; Zlatev, I.; Foster, D. J.; Taneja, N.; Charisse, K.; Maier, M. A.; Rajeev, K. G.; Manoharan, M.; Egli, M. *Nucleic Acids Res.* **2018**, *46*, 8090.

(28) Malek-Adamian, E.; Patrascu, M. B.; Jana, S. K.; Martínez-Montero, S.; Moitessier, N.; Damha, M. J. J. Org. Chem. 2018, 83, 9839.

(29) Frei, S.; Istrate, A.; Leumann, C. J. Beilstein J. Org. Chem. 2018, 14, 3088.

(30) Schlegel, M. K.; Foster, D. J.; Kel'in, A. V.; Zlatev, I.; Bisbe, A.; Jayaraman, M.; Lackey, J. G.; Rajeev, K. G.; Charisse, K.; Harp, J.; Pallan, P. S.; Maier, M. A.; Egli, M.; Manoharan, M. *J. Am. Chem. Soc.* **2017**, *139*, 8537.

(31) Goyenvalle, A.; Leumann, C.; Garcia, L. J. Neuromuscul. Dis. 2016, 3, 157.

(32) Shen, X.; Corey, D. R. Nucleic Acids Res. 2018, 46, 1584.

(33) Altmann, K.-H.; Kesselring, R.; Francotte, E.; Rihs, G. Tetrahedron Lett. 1994, 35, 2331.

(34) Siddiqui, M. A.; Ford, H.; George, C.; Marquez, V. E. Nucleosides Nucleotides 1996, 15, 235.

(35) Marquez, V. E.; Siddiqui, M. A.; Ezzitouni, A.; Russ, P.; Wang, J.; Wagner, R. W.; Matteucci, M. D. J. Med. Chem. **1996**, *39*, 3739.

(36) Maier, M. A.; Choi, Y.; Gaus, H.; Barchi, J. J., Jr.; Marquez, V.

E.; Manoharan, M. Nucleic Acids Res. 2004, 32, 3642.

(37) Terrazas, M.; Ocampo, S. M.; Perales, J. C.; Marquez, V. E.; Eritja, R. *ChemBioChem* **2011**, *12*, 1056.

(38) Pallan, P. S.; Marquez, V. E.; Egli, M. Biochemistry 2012, 51, 2639.

(39) Shaw, G.; Warrener, R. N. J. Chem. Soc. 1958, 157.

(40) Umemiya, H.; Kagechika, H.; Hashimoto, Y.; Shudo, K. *Nucleosides Nucleotides* **1996**, *15*, 465.

(41) Dejmek, M.; Kovačková, S.; Zborníková, E.; Hřebabecký, H.; Šála, M.; Dračínský, M.; Nencka, R. *RSC Adv.* **2012**, *2*, 6970.

(42) Saneyoshi, H.; Deschamps, J. R.; Marquez, V. E. J. Org. Chem. 2010, 75, 7659.

(43) Janas, M. M.; Schlegel, M. K.; Harbison, C. E.; Yilmaz, V. O.; Jiang, Y.; Parmar, R.; Zlatev, I.; Castoreno, A.; Xu, H.; Shulga-Morskaya, S.; Rajeev, K. G.; Manoharan, M.; Keirstead, N. D.; Maier,

M. A.; Jadhav, V. Nat. Commun. 2018, 9, 723.

(44) Wolfrum, C.; Shi, S.; Jayaprakash, K. N.; Jayaraman, M.; Wang, G.; Pandey, R. K.; Rajeev, K. G.; Nakayama, T.; Charrise, K.; Ndungo, E. M.; Zimmermann, T.; Koteliansky, V.; Manoharan, M.; Stoffel, M. *Nat. Biotechnol.* **2007**, *25*, 1149.

Synthesis and Biophysical Characterization of RNAs Containing 2'-Fluorinated *Northern* Methanocarbacyclic Nucleotides

Masaaki Akabane-Nakata, Pawan Kumar, Rajat S. Das, Namrata D. Erande, Shigeo Matsuda, Martin Egli,[†] and Muthiah Manoharan*

Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States [†]Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States

*email: mmanoharan@alnylam.com

Table of Contents

Synthetic procedures and characterization data for the new compounds	S2
¹ H, ¹³ C, ¹⁹ F, and ³¹ P NMR spectra for the new compounds	S16
Oligonucleotide synthesis and characterization	S86
Table S1. LC-MS (<i>m</i> / <i>z</i>) analysis of modified oligonucleotides	S86
LC-MS profiles of modified oligonucleotides	S87
Thermal melting studies	S101
Table S2. UV melting temperatures of duplexes containing 2-F-NMC : 2-F-NMC bas and their comparison to those carrying 2-F-RNA : 2-F-RNA base pairs	e pairs S101
Table S3. Duplexes analyzed for $T_{\rm m}$ studies	S101
Figure S1. $T_{\rm m}$ profiles of the duplexes	S101
Circular dichroism spectroscopy	S107
Table S4. Modified duplexes for CD spectroscopy	S107
Exonuclease assays	S107
Figure S2. UV trace from HPLC of HPLC/mass spectra for oligonucleotides carryin modifications: Comparison of hydrophobicity	ig multiple S108
Modeling study	S109
References	

Synthetic procedures and compound characterization

General conditions

TLC was performed on Merck silica gel 60 plates coated with F254. Compounds were visualized under UV light (254 nm) or after spraying with the *p*-anisaldehyde staining solution followed by heating. Flash column chromatography was performed using a Teledyne ISCO Combi Flash system with pre-packed RediSep Teledyne ISCO silica gel cartridges. All moisture-sensitive reactions were carried out under anhydrous conditions using dry glassware, anhydrous solvents, and argon atmosphere. The microwave reactions were performed using a Discover® SP microwave system (CEM corporation) and heated in sealed glass tubes at 200 W with a 30 sec premixing time. The reaction temperature was monitored with an internal infrared probe. All commercially available reagents and solvents were purchased from Sigma-Aldrich unless otherwise stated and were used as received. ESI-MS spectra were recorded on a Waters Qtof Premier instrument using the direct flow injection mode. ¹H NMR spectra were recorded at 400 or 500 MHz. ¹³C NMR spectra were recorded at 101 or 126 MHz. ¹⁹F NMR spectra were recorded at 470 MHz. ³¹P NMR spectra were recorded at 202 MHz. Chemical shifts are given in ppm referenced to the solvent residual peak (DMSO- $d_6 - {}^{1}\text{H}$: δ at 2.50 ppm and ${}^{13}\text{C}$ δ at 39.5 ppm; acetone- $d_6 - {}^{1}\text{H}$: δ at 2.05 ppm and ${}^{13}\text{C}$ δ at 29.8 and 206.3 ppm; $\overrightarrow{\text{CD}}_3\text{CN} - {}^{1}\text{H}$: δ at 1.94 ppm and ${}^{13}C \delta$ at 1.32 and 118.3 ppm). Coupling constants are given in Hertz. Signal splitting patterns are described as singlet (s), doublet (d), triplet (t), septet (sept), broad signal (brs), or multiplet (m).

Synthesis of compound 2

3'-Methoxy acrylic acid (1.07 g, 10.5 mmol) was dissolved in CH_2Cl_2 (15 mL). It was cooled to 0 °C in an ice bath, and oxalyl chloride (4.43 mL, 52.3 mmol) was added to the solution dropwise. The solution was allowed to warm to room temperature and was stirred for 16 h. Solvent was removed, and the residual solid was kept under high vacuum for 10 min. This acid chloride was dissolved in toluene (30 mL). To the solution was added silver cyanate (1.88 g, 12.6 mmol) followed by refluxing for 2 h. After cooling to room temperature, the liquid was carefully filtered through 0.2-µm syringe filter and then cooled to -78 °C. Compound 1, which was made following Jung et al.,¹ (1.36 g, 3.49 mmol) in CH_2Cl_2 (10 mL) was added dropwise to this solution over 5 min. The solution was then warmed to room temperature and stirred for 18 h. The reaction was quenched by adding EtOH. The mixture was filtered and evaporated to a syrup. The residue was dissolved in 2 N HCl (8 mL) and MeOH (25 mL) and was refluxed at 90 °C for 16 hours. After excess solvent was removed, the crude residue was purified by column chromatography on silica gel (0–15% MeOH in CH_2Cl_2) to provide compound **2** as white powder (710 mg, 80%).

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.31 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 5.55 (dd, *J* = 8.0 and 1.8 Hz, 1H), 4.98 (brs, 2H), 4.75 (d, *J* = 17.6 Hz, 1H), 4.41–4.58 (m, 2H), 4.01 (d, *J* = 11.4 Hz, 1H), 3.08 (d, *J* = 11.5 Hz, 1H), 1.33 (dd, *J* = 8.9 and 3.6 Hz, 1H), 0.95–0.97 (m, 1H), 0.65-0.69 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.2, 150.8, 141.4, 101.4, 95.3 (d, *J* = 190.3 Hz), 69.9 (d, *J* = 16.4 Hz), 61.31, 59.9 (d, *J* = 27.7 Hz), 36.2, 20.6, 10.9 (d, *J* = 3.8 Hz). ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -187.57 – -187.37 (m). HRMS calc. for C₁₁H₁₄FN₂O₄ [M + H]⁺ 257.0932, found 257.0948.

Synthesis of compound 3

To a solution of compound **2** (0.858 g, 3.35 mmol) in pyridine (5 mL), 4,4'-dimethoxytrityl chloride (1.48 g, 4.36 mmol) was added. The mixture was stirred at room temperature for 4 h. The reaction was quenched by addition of MeOH. After excess solvent was removed, the residue was dissolved in CH_2Cl_2 and washed with saturated NaHCO₃ (aq.) and brine. The organic layer was dried with Na₂SO₄ and purified by column chromatography on silica gel (30–80 % ethyl acetate in hexanes). Compound **3** was obtained as white foam (1.07 g, 57%).

¹H NMR (400 MHz, acetone- d_6) δ 10.07 (s, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.48–7.50 (m, 2H), 7.24–7.38 (m, 7H), 6.91 (d, J = 8.5 Hz, 4H), 5.26 (d, J = 8.0 Hz, 1H), 4.96–5.06 (m, 2H), 4.74

(dd, J = 50.5 and 5.4 Hz, 1H), 4.01–4.15 (m, 2H), 3.79 (s, 6H), 2.76 (d, J = 10.1 Hz, 1H), 1.39 (dd, J = 8.9 and 3.7 Hz, 1H), 1.13–1.16 (m, 1H), 0.60–0.65 (m, 1H). ¹³C NMR (126 MHz, acetone- d_6) δ 163.6, 159.8, 159.7, 151.7, 150.7, 146.2, 142.2, 136.9, 136.6, 131.1, 131.0, 129.0, 128.8, 127.8, 124.6, 114.1, 114.1, 102.8, 96.3 (d, J = 190.3 Hz), 87.4, 72.5 (d, J = 16.4 Hz), 65.0, 61.1 (d, J = 26.5 Hz), 55.6, 35.6, 22.9, 11.5 (d, J = 7.6 Hz). ¹⁹F NMR (470 MHz, acetone- d_6) δ -187.37 (ddd, J = 52.5, 19.4 and 19.4 Hz). HRMS calc. for C₃₂H₃₁FN₂NaO₆ [M + Na]⁺ 581.2064, found 581.2062.

Synthesis of compound 4

To a solution of compound **3** (1.12 g, 2.00 mmol) in CH₃CN (20 mL) were added DIPEA (0.418 mL, 2.40 mmol), 2-cyanoethyl N,N,N',N'-tetraisopropylphosphordiamidite (0.669 mL, 3.00 mmol) and 1*H*-tetrazole (0.45 M in CH₃CN, 4.88 mL, 2.20 mmol). The solution was stirred at room temperature for 3 h. The reaction was quenched with MeOH. The solvents were removed under reduced pressure, and the residue was dissolved in CH₂Cl₂, washed with saturated NaHCO₃ (aq.), and dried with Na₂SO₄. The volume of CH₂Cl₂ was reduced to 5 mL, and the mixture was added dropwise to 300 mL stirring hexanes. The precipitated white solid was collected and dried under high vacuum. Compound **4** was obtained as white powder (1.31 g, 87%).

¹H NMR (500 MHz, CD₃CN) δ 9.29 (brs, 1H), 7.98–8.03 (m, 1H), 7.42–7.47 (m, 2H), 7.25–7.35 (m, 7H), 6.86–6.89 (m, 4H), 5.13–5.16 (m, 1H), 4.89–5.09 (m, 2H), 4.67–4.80 (m, 1H), 3.57–3.93 (m, 11H), 2.74 (d, J = 10.3 Hz, 0.5H), 2.68 (d, J = 10.2 Hz, 0.5H), 2.65 (t, J = 6.0 Hz, 1H), 2.55 (t, J = 6.0 Hz, 1H), 1.22–1.26 (m, 1H), 1.08–1.20 (m, 13H), 0.61–0.66 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 164.1, 164.1, 159.8, 159.8, 151.9, 151.9, 146.1, 146.1, 142.8, 142.6, 136.7, 136.5, 131.3, 131.2, 129.1, 129.1, 129.0, 129.0, 128.1, 128.0, 119.8, 119.5, 114.2, 114.2, 102.9, 97.0, 96.0, 95.1, 94.1, 87.5, 87.5, 74.3, 74.2, 74.1, 74.0, 73.5, 73.4, 73.2, 64.2, 61.9, 61.6, 59.9, 59.7, 59.2, 59.0, 56.0, 56.0, 44.3, 44.2, 44.1, 44.1, 44.0, 43.9, 35.5, 35.4, 35.4, 35.3, 25.2, 25.1, 25.1, 25.1, 25.0, 24.9, 24.9, 22.7, 21.2, 21.2, 21.1, 21.1, 12.1, 12.1, 12.1, 12.0. ¹⁹F NMR (470 MHz, CD₃CN) δ -186.32 – -186.10 (m), -185.78 – -185.57 (m). ³¹P NMR (202 MHz, CD₃CN) δ 151.49 (d, J = 12.1 Hz), 151.37 (d, J = 8.1 Hz). HRMS calc. for C₄₁H₄₉FN₄O₇P [M + H]⁺ 759.3317, found 759.3344.

Synthesis of compound 5

To a solution of compound **3** (1.70 g, 3.04 mmol) in DMF (30 mL) were added *tert*butyldimethylsilyl chloride (688 mg, 4.56 mmol) and imidazole (622 mg, 9.13 mmol). The reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with water and then diluted with diethyl ether. The organic layer was washed with water and brine, dried with Na₂SO₄, and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–50% ethyl acetate in hexanes). Compound **5** was isolated as a white foam (1.98 g, 97%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.40 (s, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.17–7.33 (m, 9H), 6.87–6.90 (m, 4H), 5.12 (d, *J* = 8.0 Hz, 1H), 4.67–4.85 (m, 3H), 3.72 (s, 6H), 3.61 (d, *J* = 10.1 Hz, 1H), 2.78 (d, *J* = 10.1 Hz, 1H), 1.41–1.44 (m, 1H), 0.93–0.95 (m, 1H), 0.73 (s, 9H), 0.62–0.67 (m, 1H), -0.02 (s, 3H), -0.08 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 163.2, 158.2, 158.2, 150.8, 144.5, 141.4, 135.1, 134.9, 129.9, 129.7, 127.9, 127.7, 126.9, 113.2, 113.1, 101.4, 93.9 (d, *J* = 193.9 Hz), 85.7, 71.6 (d, *J* = 16.2 Hz), 63.2, 60.3 (d, *J* = 26.3 Hz), 55.0, 34.7, 25.5, 21.0, 17.7, 10.8 (d, *J* = 7.1 Hz), -4.86, -5.37. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -187.66 (ddd, *J* = 50.0, 18.0 and 18.0 Hz). HRMS calc. for C₃₈H₄₅FN₂NaO₆Si [M + Na]⁺ 695.2923, found 695.2959.

Synthesis of compound 6

Phosphorus oxychloride (0.353 mL, 3.79 mmol) was added dropwise to a solution of 1,2,4triazole (2.09 g, 30.3 mmol) and triethylamine (4.23 mL, 30.3 mmol) in CH₃CN (10 mL) maintained in an ice bath. After stirring for 30 min, a solution of compound **5** (850 mg, 1.26 mmol) in CH₃CN (5 mL) was added dropwise to the reaction. After stirring for 10 min at 0 °C, the reaction was stirred at room temperature for 4 h. The solvent was then removed under vacuum, and the residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated NaHCO₃ (aq.) and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was dissolved in THF (10 mL), and NH₃ (aq.) (2.5 mL) was added. The reaction mixture was stirred at room temperature overnight and diluted with ethyl acetate. The solution was sequentially washed with water and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–10% MeOH in CH₂Cl₂) to give compound **6** as a white foam (779 mg, 92%).

¹H NMR (400 MHz, DMSO- d_6) δ 8.08 (d, J = 7.4 Hz, 1H), 7.17–7.34 (m, 11H), 6.88–6.90 (m, 4H), 5.54 (d, J = 7.4 Hz, 1H), 4.94 (d, J = 18.2 Hz, 1H), 4.82 (dd, J = 18.2 and 5.7 Hz, 1H), 4.51

(dd, J = 50.6 and 5.7 Hz, 1H), 3.73 (s, 6H), 3.54 (d, J = 10.1 Hz, 1H), 2.78 (d, J = 10.1 Hz, 1H), 1.41–1.44 (m, 1H), 0.92–0.96 (m, 1H), 0.60–0.71 (m, 10H), -0.04 (s, 3H), -0.12 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.5, 158.2, 155.2, 144.5, 141.7, 135.2, 129.8, 129.7, 127.9, 127.7, 126.9, 113.3, 113.2, 94.4 (d, J = 194.9 Hz), 94.1, 85.6, 71.5 (d, J = 15.2 Hz), 63.4, 60.6 (d, J = 25.3 Hz), 55.0, 34.6, 25.5, 21.4, 17.7, 10.9 (d, J = 7.1 Hz), -4.86, -5.37. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -186.59 (ddd, J = 50.4, 18.4 and 18.4 Hz). HRMS calc. for C₃₈H₄₇FN₃O₅Si [M + H]⁺ 672.3264, found 672.3278.

Synthesis of compound 7

To a solution of compound **6** (650 mg, 0.967 mmol) in pyridine (10 mL) at 0 °C was added dropwise benzoyl chloride (0.168 mL, 1.45 mmol). The mixture was stirred at 0 °C for 3 h. The reaction mixture was diluted with ethyl acetate and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (25–75% ethyl acetate in hexanes) to give compound **7** as a white foam (663 mg, 88%).

¹H NMR (400 MHz, DMSO- d_6) δ 11.33 (s, 1H), 8.60 (d, J = 7.6 Hz, 1H), 7.99–8.01 (m, 2H), 7.49–7.64 (m, 3H), 7.22–7.36 (m, 10H), 6.90–6.92 (m, 4H), 5.02 (d, J = 17.6 Hz, 1H), 4.88 (dd, J = 5.8 and 17.6 Hz, 1H), 4.68 (dd, J = 5.8 and 50.6 Hz, 1H), 3.75 (s, 6H), 3.61 (d, J = 10.0 Hz, 1H), 2.81 (d, J = 10.0 Hz, 1H), 1.63–1.66 (m, 1H), 1.01–1.04 (m, 1H), 0.68–0.71 (m, 10H), -0.03 (s, 3H), -0.12 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.7, 163.2, 158.7, 158.7, 155.3, 150.8, 146.5, 144.5, 135.7, 135.65, 133.5, 133.2, 130.2, 128.9, 128.8, 128.4, 128.4, 127.4, 113.8, 113.7, 95.9 (d, J = 219.2 Hz), 93.3, 86.2, 71.8 (d, J = 13.1 Hz), 63.8, 62.1 (d, J = 21.2 Hz), 55.4, 35.3, 26.0, 21.4, 18.2, 11.5 (d, J = 6.1 Hz), -4.37, -4.94. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -187.76 (ddd, J = 50.7, 17.8 and 17.8 Hz). HRMS calc. for C₄₅H₅₁FN₃O₆Si [M + H]⁺ 776.3526, found 776.3508.

Synthesis of compound 8

To a solution of compound 7 (570 mg, 0.735 mmol) in THF (10 mL) at 0 °C was added dropwise tetra-*n*-butylammonium fluoride (1 M in THF, 1.10 mL, 1.10 mmol), and the mixture was stirred at room temperature overnight. The reaction mixture was concentrated under vacuum. The crude

residue was purified by column chromatography on silica gel (50-100% ethyl acetate in hexanes) to give compound $\mathbf{8}$ as a white foam (485 mg, quant.).

¹H NMR (400 MHz, DMSO- d_6) δ 11.29 (s, 1H), 8.50 (d, J = 7.5 Hz, 1H), 8.00–8.02 (m, 2H), 7.23–7.64 (m, 13H), 6.90– 6.94 (m, 4H), 5.09 (d, J = 8.1 Hz, 1H), 4.99 (d, J = 17.6 Hz, 1H), 4.79 (dd, J = 8.1, 8.1 and 22.2 Hz, 1H), 4.60 (dd, J = .1 and 50.4 Hz, 1H), 3.76–4.81 (m, 7H), 2.62 (d, J = 10.1 Hz, 1H), 1.47– 1.49 (m, 1H), 1.04–1.07 (m, 1H), 0.59–0.61 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 167.8, 163.3, 158.6, 158.6, 155.2, 146.4, 144.9, 136.3, 136.0, 133.6, 133.2, 130.2, 130.0, 128.9, 128.9, 128.4, 128.3, 127.3, 113.8, 97.1, 95.0 (d, J = 191.9 Hz), 86.3, 70.7 (d, J = 17.2 Hz), 64.4, 61.8 (d, J = 27.3 Hz, 1H), 55.4 (d, J = 2.0 Hz), 34.6, 21.86, 11.5 (d, J = 7.1 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6) δ -187.19 (ddd, J = 50.1, 18.8 and 18.8 Hz). HRMS calc. for C₃₉H₃₇FN₃O₆ [M + H]⁺ 662.2661, found 662.2690.

Synthesis of compound 9

To a solution of compound **8** (500 mg, 0.756 mmol) and DIPEA (0.395 mL, 2.27 mmol) in CH_2Cl_2 (9 mL) at 0 °C was added dropwise 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (0.202 mL, 0.907 mmol) and the mixture was stirred at 0 °C for 1 h. The reaction mixture was diluted with ethyl acetate and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (50–65% ethyl acetate in hexanes) to give compound **9** as a white foam (479 mg, 73%).

¹H NMR (400 MHz, CD₃CN) δ 9.31 (brs, 1H), 8.55–8.59 (m, 1H), 7.95–7.97 (m, 2H), 7.18–7.64 (m, 13H), 6.89–6.92 (m, 4H), 4.98–5.14 (m, 2H), 4.66–4.80 (m, 1H), 3.90–3.96 (m, 1H), 3.59–3.87 (m, 10H), 2.74 (d, J = 8.2 Hz, 0.4H), 2.69 (d, J = 8.2 Hz, 0.6H), 2.62 (t, J = 4.6 Hz, 0.8H), 2.53 (t, J = 4.6 Hz, 1.2H), 1.38–1.41 (m, 1H), 1.07–1.19 (m, 13H), 0.65–0.66 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 168.20, 163.43, 163.36, 159.74, 156.11, 147.39, 147.24, 145.55, 145.50, 136.99, 136.84, 136.81, 136.78, 134.43, 133.85, 133.83, 131.07, 131.04, 131.00, 130.97, 129.61, 129.26, 129.19, 129.06, 129.04, 129.02, 128.04, 128.01, 119.67, 119.45, 114.21, 114.20, 97.76, 96.62, 95.57, 95.54, 94.69, 93.63, 93.61, 87.49, 87.43, 74.16, 74.03, 74.00, 73.88, 73.23, 73.08, 64.46, 63.28, 63.23, 63.01, 62.96, 59.77, 59.57, 59.09, 58.88, 55.91, 55.88, 44.18, 44.06, 44.01, 43.89, 35.48, 35.43, 35.35, 25.10, 25.06, 25.03, 24.99, 24.92, 24.84, 24.78, 22.78, 22.68, 21.08, 21.01, 12.34, 12.28, 12.21. ¹⁹F NMR (470 MHz, CD₃CN) δ -186.47 – -186.24 (m), -185.74 – 185.53 (m). ³¹P NMR (202 MHz, CD₃CN) δ 151.61(d, J = 13.9 Hz), 151.48 (d, J = 6.9 Hz). HRMS calc. for C₄₈H₅₄FN₅O₇P [M + H]⁺ 862.3739, found 862.3726.

Synthesis of compound 11

To a solution of compound 1 (1.80 g, 4.62 mmol) and DIPEA (2.41 mL, 13.9 mmol) in 1,4dioxane (20 mL) was added 4,6-dichloro-5-formamidopyrimidine (1.06 g, 5.54 mmol). The reaction mixture was stirred and heated in microwave reactor at 100 °C for 6 h. The reaction was cooled to room temperature and concentrated under vacuum. The residue containing compound 10 was dissolved in diethoxymethyl acetate (10 mL), and the solution was stirred and heated in a microwave reactor at 120 °C for 2 h. After concentration under vacuum, the crude residue was purified by column chromatography on silica gel (0–15% ethyl acetate in hexanes) to afford compound 11 as a yellow foam (1.32 g, 54%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.78 (s, 1H), 8.76 (s, 1H), 5.12 (d, *J* = 15.6 Hz, 1H), 4.89 (brs, 1H), 4.80 (dd, *J* = 32.4 and 5.4 Hz, 1H), 4.19 (d, *J* = 10.8 Hz, 1H), 3.36 (d, *J* = 10.8 Hz, 1H), 1.79 (dd, *J* = 8.8 and 3.9 Hz, 1H), 1.15–1.18 (m, 1H), 0.93 (s, 9H), 0.85-0.90 (m, 10H), 0.10 (s, 6H), 0.06 (s, 3H), 0.00 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 151.5, 151.5, 158.2, 148.9, 144.5, 131.1, 93.4 (d, *J* = 192.8 Hz), 70.7 (d, *J* = 15.1 Hz), 63.3, 59.0 (d, *J* = 27.7 Hz), 35.9, 25.8, 25.6, 22.0, 17.9, 17.8, 10.8 (d, *J* = 7.6 Hz), -4.88, -5.27, -5.59, -5.66. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -189.95 – -189.76 (m). HRMS calc. for $C_{24}H_{41}CIFN_4O_2Si_2$ [M + H]⁺ 527.2435, found 527.2441.

Synthesis of compound 12

A mixture of compound **11** (100 mg, 0.190 mmol), ammonium hydroxide solution (2 mL), and 1,4-dioxane (2 mL) was stirred and heated in a microwave reactor at 100 °C for 6 h. After the mixture was concentrated under vacuum, the crude residue was purified by column chromatography on silica gel (50–100% ethyl acetate in hexanes). Compound **12** was isolated as a white solid (87.3 mg, 91%).

¹H NMR (500 MHz, DMSO- d_6) δ 8.25 (s, 1H), 8.15 (s, 1H), 7.28 (brs, 2H), 4.98 (d, J = 16.3 Hz, 1H), 4.87 (dd, J = 19.9 and 5.1 Hz, 1H), 4.82 (dd, J = 50.7 and 5.1 Hz, 1H), 4.17 (d, J = 10.8 Hz, 1H), 3.33 (d, J = 10.8 Hz, 1H), 1.67 (dd, J = 8.4 and 3.9 Hz, 1H), 1.12 (dd, J = 3.9 and 3.9 Hz, 1H), 0.92 (s, 9H), 0.82– 0.86 (m, 10H), 0.09 (s, 6H), 0.07 (s, 3H), 0.02 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 156.0, 152.6, 149.0, 137.8, 118.7, 94.1 (d, J = 194.0 Hz), 70.7 (d, J = 16.4 Hz), 63.4, 58.1 (d, J = 26.5 Hz), 35.8, 25.8, 25.6, 22.3, 18.0, 17.9, 10.8 (d, J = 7.6 Hz), -4.85, -

5.21, -5.50, -5.60. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.53 - -188.34 (ddd, J = 50.4, 18.4 and 18.4 Hz). HRMS calc. for C₂₄H₄₃FN₅O₂Si₂ [M + H]⁺ 508.2934, found 508.2929.

Syntheses of compounds 13 and 14

To a solution of compound **12** (1.00 g, 1.97 mmol) in pyridine (20 mL) was added dropwise benzoyl chloride (0.274 mL, 2.36 mmol) at 0 °C, and the mixture was stirred at 0 °C for 3 h. The reaction was quenched with MeOH and concentrated under vacuum. The residue was dissolved in ethyl acetate and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–100% ethyl acetate in hexanes). Compound **13** was isolated as a white foam (270 mg, 19%), and compound **14** was isolated as a white foam (786 mg, 65%).

Conversion of 13 to 14

A mixture of compound **13** (180 mg, 0.251 mmol), ammonium hydroxide solution (2 mL), and THF (2 mL) was stirred at 0 °C for 3 h. The reaction mixture was diluted with ethyl acetate and washed with water and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (20–50% ethyl acetate in hexanes). The desired compound **14** was isolated as a white foam (152 mg, 99%).

Compound **13**: ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.71 (s, 1H), 8.62 (s, 1H), 7.76 (d, *J* = 7.3 Hz, 4H), 7.57 (dd, *J* = 7.3 and 7.3 Hz, 2H), 7.44 (dd, *J* = 7.3 and 7.3 Hz, 4H), 5.10 (d, *J* = 16.1 Hz, 1H), 4.93 (dd, *J* = 19.8 and 5.6 Hz, 1H), 4.68 (dd, *J* = 14.0 and 5.6 Hz, 1H), 4.12 (d, *J* = 10.8 Hz, 1H), 3.38 (d, *J* = 10.8 Hz, 1H), 1.69 (dd, *J* = 8.9 and 3.9 Hz, 1H), 1.11–1.13 (m, 1H), 0.87 (s, 9H), 0.84–0.86 (m, 10H), 0.09 (s, 3H), 0.04 (s, 6H), 0.02 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.0, 152.5, 151.6, 150.7, 144.5, 133.6, 133.2, 128.9, 128.9, 127.0, 93.8 (d, *J* = 194.9 Hz), 70.9 (d, *J* = 16.2 Hz), 63.2, 59.2 (d, *J* = 26.3 Hz), 35.9, 25.8, 25.6, 22.1, 17.9, 17.8, 10.9 (d, *J* = 7.1 Hz), -4.85, -5.17, -5.51, -5.63. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -187.76 (dddd, *J* = 51.2, 39.5, 39.5 and 4.7 Hz). HRMS calc. for C₃₈H₅₁FN₅O₄Si₂ [M + H]⁺ 716.3458, found 716.3480.

Compound 14: ¹H NMR (500 MHz, DMSO- d_6) δ 11.19 (s, 1H), 8.75 (s, 1H), 8.53 (s, 1H), 8.03 (d, J = 7.4 Hz, 2H), 7.64 (dd, J = 7.4 and 7.4 Hz, 1H), 7.54 (dd, J = 7.4 and 7.4 Hz, 2H), 5.13 (d, J = 16.0 Hz, 1H), 4.78–4.92 (m, 2H), 4.18 (d, J = 10.9 Hz, 1H), 3.38 (d, J = 10.9 Hz, 1H), 1.76

(dd, J = 8.8 and 3.7 Hz, 1H), 1.14–1.16 (m, 1H), 0.91 (s, 9H), 0.86–0.87 (m, 10H), 0.09 (s, 6H), 0.08 (s, 3H), 0.03 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 165.6, 152.0, 151.5, 150.2, 141.7, 133.5, 132.4, 128.5, 128.4, 125.5, 93.9 (d, J = 194.0 Hz), 70.8 (d, J = 15.1 Hz), 63.4, 58.6 (d, J = 26.5 Hz), 36.0, 25.9, 25.6, 22.0, 18.0, 17.8, 10.9 (d, J = 7.6 Hz), -4.83, -5.20, -5.46, -5.56. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -188.93 – -188.73 (m). HRMS calc. for C₃₁H₄₇FN₅O₃Si₂ [M + H]⁺ 612.3196, found 612.3206.

Synthesis of compound 15

To a solution of compound 14 (750 mg, 1.23 mmol) in THF (12 mL) was added dropwise triethylamine trihydrofluoride (0.999 mL, 6.13 mmol) at room temperature, and the mixture was stirred at 55 °C for 6 h. The reaction mixture was concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–10% MeOH in CH_2Cl_2). Compound 15 was isolated as a white foam (463 mg, 98%).

¹H NMR (500 MHz, DMSO- d_6) δ 11.18 (s, 1H), 8.75–8.76 (m, 2H), 8.03 (d, J = 7.4, 2H), 7.63 (d, J = 7.4 and 7.4, 1H), 7.54 (dd, J = 7.4 and 7.4, 2H), 5.10–5.15 (m, 3H), 4.63–4.74 (m, 2H), 4.11 (dd, J = 11.5 and 5.4 Hz, 1H), 4.60 (dd, J = 11.5 and 4.7 Hz, 1H), 1.71 (dd, J = 8.7 and 3.7 Hz, 1H), 1.15–1.17 (m, 1H), 0.79–0.82 (m, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 165.6, 151.8, 151.5, 150.3, 142.2, 133.4, 132.4, 128.5, 128.4, 125.4, 94.9 (d, J = 191.5 Hz), 70.0 (d, J = 16.4 Hz), 61.5, 58.6 (d, J = 26.5 Hz, 1H), 35.8, 21.9, 11.2 (d, J = 7.6 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.79 – -188.59 (m). HRMS calc. for C₁₉H₁₉FN₅O₃ [M + H]⁺ 384.1466, found 384.1471.

Synthesis of compound 16

To a solution of compound **15** (400 mg, 1.04 mmol) in pyridine (10 mL) was added 4,4'dimethoxytrityl chloride (424 mg, 1.25 mmol), and the mixture was stirred at room temperature overnight. The reaction was quenched with dry MeOH and concentrated under vacuum. The residue was dissolved in ethyl acetate and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (50–100% ethyl acetate in hexanes) to give compound **16** as a white foam (650 mg, 91%).

¹H NMR (500 MHz, DMSO- d_6) δ 11.22 (s, 1H), 8.71 (s, 1H), 8.61 (s, 1H), 8.04 (d, J = 7.3 Hz, 1H), 7.64 (dd, J = 7.3 and 7.3 Hz, 1H), 7.54 (dd, J = 7.3 and 7.3 Hz, 1H), 7.37–7.39 (m, 2H),

7.19–7.30 (m, 7H), 6.85–6.87 (m, 4H), 5.12–5.16 (m, 2H), 4.86–5.02 (m, 2H), 3.69–3.71 (m, 7H), 2.83 (d, J = 9.9 Hz, 1H), 1.67– 1.69 (m, 1H), 1.12–1.14 (m, 1H), 0.74–0.78 (m, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 165.6, 158.0, 158.0, 151.9, 151.5, 150.3, 144.7, 142.3, 135.8, 135.6, 133.4, 132.4, 129.7, 129.6, 128.5, 128.4, 127.9, 127.7, 126.7, 125.6, 113.2, 94.7 (d, J = 190.3 Hz), 85.5, 70.9 (d, J = 16.4 Hz), 63.4, 59.2 (d, J = 27.7 Hz, 1H), 33.9, 22.5, 10.8 (d, J = 6.3 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.07 – -187.87 (m). HRMS calc. for C₄₀H₃₇FN₅O₅ [M + H]⁺ 686.2773, found 686.2790.

Synthesis of compound 17

To a solution of compound **16** (560 mg, 0.817 mmol) and DIPEA (0.427 mL, 2.45 mmol) in CH_2Cl_2 (8 mL) was added dropwise 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (0.219 mL, 0.980 mmol) at 0 °C, and the mixture was stirred at room temperature for 2 h. The reaction mixture was quenched with saturated NaHCO₃ (aq.) and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (50% ethyl acetate in hexanes) to give compound **17** as a white foam (593 mg, 82%).

¹H NMR (400 MHz, CD₃CN) δ 9.51 (brs, 1H), 8.61–8.63 (m, 1H), 8.49–8.53 (m, 1H), 8.00 (d, J = 7.3 Hz, 2H), 7.61–7.65 (m, 1H), 7.53 (dd, J = 7.3 and 7.3 Hz, 2H), 7.41–7.47 (m, 2H), 7.19–7.34 (m, 7H), 6.82–6.86 (m, 4H), 5.15–5.37 (m, 2H), 5.02 (dd, J = 50.3 and 5.8 Hz, 1H), 3.55–3.86 (m, 11H), 2.94 (d, J = 10.0 Hz, 0.3H), 2.89 (d, J = 10.1 Hz, 0.7H), 2.57 (t, J = 5.9 Hz, 0.6H), 2.51 (t, J = 6.1 Hz, 1.4H), 1.63–1.69 (m, 1H), 1.20–1.23 (m, 1H), 1.07–1.18 (m, 12H), 0.79–0.87 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 159.7, 159.7, 153.1, 152.7, 151.0, 146.1, 143.4, 143.3, 136.9, 136.9, 135.1, 133.6, 131.2, 131.1, 129.7, 129.2, 129.1, 129.0, 128.0, 127.9, 125.6, 119.6, 119.5, 114.2, 96.7, 96.0, 95.9, 94.8, 94.0, 94.0, 87.2, 74.7, 74.6, 74.4, 73.9, 73.8, 73.6, 64.2, 64.1, 61.3, 61.3, 61.1, 61.0, 59.9, 59.7, 59.4, 59.2, 56.0, 56.0, 44.2, 44.1, 44.0, 35.3, 35.3, 35.2, 25.2, 25.1, 25.1, 25.1, 25.0, 25.0, 24.9, 23.9, 23.9, 21.1, 21.0, 12.1, 12.0, 12.0. ¹⁹F NMR (470 MHz, CD₃CN) δ -186.55 – -186.34 (m), -187.18 – -186.96 (m). ³¹P NMR (202 MHz, CD₃CN) δ 151.47 (d, J = 12.1 Hz), 151.19 (d, J = 16.0 Hz). HRMS calc. for C₄₉H₅₄FN₇O₆P [M + H]⁺ 886.3852, found 886.3837.

Synthesis of compound 18 and 19

Reaction using 1,4-dioxane: To a solution of compound **1** (100 mg, 0.257 mmol) and DIPEA (0.134 mL, 0.770 mmol) in 1,4-dioxane (3 mL) was added 2-amino-4,6-dichloro-5-formamidopyrimidine (79.7 mg, 0.385 mmol). The reaction mixture was stirred and heated in a microwave reactor at 100 °C for 12 h. The reaction was cooled to room temperature, and the solution was concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–50% ethyl acetate in hexanes). Compound **18** was isolated as a yellow solid (127 mg, 88%).

Reaction using toluene: To a solution of compound **1** (100 mg, 0.257 mmol) and DIPEA (0.134 mL, 0.770 mmol) in toluene (3 mL) was added 2-amino-4,6-dichloro-5-formamidopyrimidine (79.7 mg, 0.385 mmol). The reaction mixture was stirred and heated in microwave reactor at 160 °C for 2 h. The reaction was cooled to room temperature, and the solution was concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (20–50% ethyl acetate in hexanes). Compound **18** was isolated as a yellow solid (100.8 mg, 70%), and compound **19** was isolated as a white solid (33.0 mg, 24%).

Reaction using n-BuOH: To a solution of compound **1** (100 mg, 0.257 mmol) and DIPEA (0.134 mL, 0.770 mmol) in *n*-butanol (3 mL) was added 2-amino-4,6-dichloro-5-formamidopyrimidine (79.7 mg, 0.385 mmol). The reaction mixture was stirred and heated in microwave reactor at 160 °C for 2 h. The reaction was cooled to room temperature and the solution was concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (20–50% ethyl acetate in hexanes). Compound **18** was isolated as a yellow solid (84.2 mg, 59%), and compound **19** was isolated as a white solid (55.9 mg, 40%).

Conversion of 18 to 19

A solution of compound **18** (84.0 mg, 0.150 mmol) and DIPEA (52.2 μ L, 0.300 mmol) in 1,4dioxane (2 mL) was stirred and heated in microwave reactor at 160 °C for 48 h. The reaction was cooled to room temperature and the solution was concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel (0–50% ethyl acetate in hexanes). Compound **19** was isolated as a white solid (14.0 mg, 17%), and starting material **18** was collected as a yellow solid (54.6 mg, 65%).

Compound **18** (mixture of rotamers): ¹H NMR (500 MHz, DMSO- d_6) δ 9.11 (brs, 0.8H), 8.51 (d, J = 11.4 Hz, 0.2H), 8.15 (brs, 0.8H), 7.79 (d, J = 11.4 Hz, 0.2H), 6.59–6.67 (m, 2.2H), 4.30–4.66 (m, 3H), 3.84–3.87 (m, 1H), 3.41–3.45 (m, 1H), 1.11–1.19 (m, 1H), 4.79–4.87 (m, 2H), 0.86–0.89 (m, 19H), 0.62–0.68 (m, 1H), 0.08–0.09 (m, 3H), 0.05–0.06 (m, 3H), -0.01–0.01 (m, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 165.6, 160.9, 160.7, 160.7, 160.2, 159.3, 156.9, 155.6, 101.9, 101.3, 95.3 (d, J = 193.9 Hz), 95.1 (d, J = 195.9 Hz), 71.8 (d, J = 19.2 Hz), 71.7 (d, J = 16.2 Hz), 63.1, 56.3 (d, J = 25.3 Hz), 55.9 (d, J = 25.3 Hz), 34.9, 34.7, 25.8, 25.6, 22.6, 22.3, 18.0,

18.0, 17.9, 10.6 (d, J = 6.1 Hz), 10.4 (d, J = 6.1 Hz), -4.73, -4.79, -4.96, -4.99, -5.28, -5.32, -5.45. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.06 - -187.84 (m). HRMS calc. for C₂₄H₄₄ClFN₅O₃Si₂ [M + H]⁺ 560.2650, found 560.2647.

Compound **19**: ¹H NMR (500 MHz, DMSO- d_6) δ 8.26 (s, 1H), 6.99 (s, 1H), 4.79–4.87 (m, 2H), 4.69 (dd, J = 50.6 and 5.5 Hz, 1H), 4.17 (d, J = 10.8 Hz, 1H), 3.32 (d, J = 10.8 Hz, 1H), 1.68 (dd, J = 8.5 and 3.1 Hz, 1H), 1.10–1.12 (m, 1H), 0.93 (s, 9H), 0.80-0.86 (m, 10H), 0.10 (s, 6H), 0.07 (s, 3H), 0.01 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 159.8, 153.6, 149.4, 139.9, 123.4, 93.6 (d, J = 192.9 Hz), 70.6 (d, J = 16.2 Hz), 63.4, 58.0 (d, J = 27.3 Hz), 35.8, 25.8, 25.6, 22.1, 18.0, 17.8, 10.7 (d, J = 8.1 Hz), -4.84, -5.26, -5.57, -5.65. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -189.95 – -189.06 (m). HRMS calc. for C₂₄H₄₂CIFN₅O₂Si₂ [M + H]⁺ 542.2544, found 542.2551.

Synthesis of compound 20

3-Hydroxypropionitrile (0.272 mL, 3.98 mmol) was dissolved in THF (5 mL) and cooled to 0 °C. Sodium hydride (60% in mineral oil, 159 mg, 3.98 mmol) was added in portions, and the mixture was stirred at room temperature for 30 min and cooled to 0 °C. A solution of compound **19** (480 mg, 0.885 mmol) in THF (5 mL) was added dropwise at 0 °C, and the mixture was stirred at room temperature. After 16 h, the reaction was quenched by addition of saturated NH₄Cl (aq.). The reaction mixture was extracted with CH₂Cl₂ and ethyl acetate. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–10% MeOH in CH₂Cl₂) to give compound **20** as a white solid (430 mg, 93%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.55 (brs, 1H), 7.90 (s, 1H), 6.52 (brs, 2H), 4.73–4.83 (m, 2H), 4.57 (dd, *J* = 50.6 and 5.2 Hz, 1H), 4.15 (d, *J* = 11.0 Hz, 1H), 3.28–3.31 (m, 1H), 1.67 (dd, *J* = 8.8 and 3.8 Hz, 1H), 1.06–1.08 (m, 1H), 0.92 (s, 9H), 0.77–0.86 (m, 10H), 0.08 (s, 6H), 0.07 (s, 3H), 0.02 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 156.8, 153.7, 150.6, 134.3, 116.5, 94.2 (d, *J* = 192.8 Hz), 70.7 (d, *J* = 16.4 Hz), 63.3, 57.7 (d, *J* = 26.5 Hz), 35.7, 25.8, 25.6, 22.4, 17.9, 17.8, 10.7 (d, *J* = 7.6 Hz), -4.85, -5.21, -5.58, -5.66. ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -188.37 – -188.18 (m). HRMS calc. for C₂₄H₄₃FN₅O₃Si₂ [M + H]⁺ 524.2883, found 524.2894.

Synthesis of compound 21

To a solution of compound **20** (430 mg, 0.821 mmol) in pyridine (8 mL) was added dropwise isobutyryl chloride (0.103 mL, 0.985 mmol) at 0 °C, and the mixture was stirred at room

temperature overnight. The reaction was quenched with MeOH and concentrated under vacuum. The residue was dissolved in ethyl acetate and washed with saturated NaHCO₃ (aq.). The aqueous layer was extracted with CH_2Cl_2 , and the combined organic layers were concentrated under vacuum. The crude residue was purified by column chromatography on silica gel (0–50% ethyl acetate in hexanes). Compound **21** was isolated as a white foam (464 mg, 95%).

¹H NMR (500 MHz, DMSO- d_6) δ 12.09 (s, 1H), 11.72 (s, 1H), 8.19 (s, 1H), 4.79–4.87 (m, 2H), 4.67 (dd, J = 50.5 and 5.3 Hz, 1H), 4.17 (d, J = 10.8 Hz, 1H), 3.31–3.32 (m, 1H), 2.78 (sept, J = 6.8 Hz, 1H), 1.68–1.70 (m, 1H), 1.10–1.12 (m, 7H), 0.94 (s, 9H), 0.84–0.88 (m, 10H), 0.10 (s, 6H), 0.07 (s, 3H), 0.02 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 180.2, 154.9, 148.2, 148.0, 136.7, 120.1, 93.9 (d, J = 194.0 Hz), 706 (d, J = 15.1 Hz), 63.3, 58.2 (d, J = 26.5 Hz), 35.8, 34.7, 25.8, 25.6, 22.4, 18.9, 18.8, 18.0, 17.8, 10.8 (d, J = 7.6 Hz), -4.83, -5.24, -5.58, -5.65. ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.86 – -188.67 (m). HRMS calc. for C₂₈H₄₉FN₅O₄Si₂ [M + H]⁺ 594.3302, found 594.3312.

Synthesis of compound 22

To a solution of compound **21** (300 mg, 0.505 mmol) in THF (5 mL) was added dropwise triethylamine trihydrofluoride (0.247 mL, 1.52 mmol) at room temperature and the mixture was stirred at 55 °C for 6 hours. The reaction mixture was concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel (0–10% MeOH in CH₂Cl₂). Compound **22** was isolated as a white solid (181 mg, 98%).

¹H NMR (500 MHz, DMSO- d_6) δ 12.08 (brs, 1H), 11.70 (brs, 1H), 8.29 (s, 1H), 5.13 (t, J = 5.0 Hz, 1H), 5.07 (d, J = 7.2 Hz, 1H), 4.83 (d, J = 15.9 Hz, 1H), 4.53–4.67 (m, 2H), 4.09 (dd, J = 11.5 and 5.0 Hz, 1H), 3.15 (dd, J = 11.5 and 5.0 Hz, 1H), 2.78 (sept, , J = 6.8 Hz, 1H), 1.62 (dd, J = 8.6 and 3.7 Hz, 1H), 1.08–1.12 (m, 7H), 0.73–0.77 (m, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 180.2, 154.9, 148.1, 148.0, 137.2, 120.1, 95.0 (d, J = 190.3 Hz), 69.7 (d, J = 16.4 Hz), 61.4, 58.3 (d, J = 26.5 Hz, 1H), 35.7, 34.7, 21.9, 18.9, 18.8, 11.1 (d, J = 7.6 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6) δ -188.50 – -188.30 (m). HRMS calc. for C₁₆H₂₁FN₅O₄ [M + H]⁺ 366.1572, found 366.1562.

Synthesis of compound 23

To a solution of compound **22** (380 mg, 1.04 mmol) in pyridine (10 mL) was added 4,4'dimethoxytrityl chloride (423 mg, 1.25 mmol) and the mixture was stirred at room temperature overnight. The reaction was quenched with dry MeOH and concentrated *in vacuo*. The residue was dissolved in ethyl acetate and washed with saturated NaHCO₃ (aq.), water, and brine, dried (Na₂SO₄) and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel (50–100% ethyl acetate in hexanes). Compound **23** was isolated as a white foam (455 mg, 66%).

¹H NMR (500 MHz, DMSO- d_6) δ 12.12 (brs, 1H), 11.70 (brs, 1H), 8.18 (s, 1H), 7.36 (d, J = 7.5 Hz, 2H), 7.29 (dd, J = 7.5 and 7.5 Hz, 2H), 7.21–7.25 (m, 5H), 6.85–6.87 (m, 4H), 5.11 (d, J = 8.0 Hz, 1H), 4.85–4.95 (m, 2H), 4.74 (dd, J = 50.4 and 5.7 Hz, 1H), 3.71–3.73 (m, 7H), 2.74–2.79 (m, 2H), 1.58 (d, J = 9.0 and 3.8 Hz, 1H), 1.10 (t, J = 6.5 Hz, 6H), 1.04–1.06 (m, 1H), 0.67–0.71 (m, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 180.2, 158.0, 154.9, 148.2, 148.0, 144.9, 137.0, 135.6, 135.4, 129.7, 129.7, 127.8, 127.6, 126.7, 120.2, 113.2, 94.7 (d, J = 190.3 Hz), 85.6, 70.7 (d, J = 16.4 Hz), 63.3, 58.7 (d, J = 26.5 Hz, 1H), 34.7, 33.8, 22.7, 18.8, 18.8, 10.7 (d, J = 7.6 Hz). ¹⁹F NMR (470 MHz, DMSO- d_6) δ -187.75 – -187.55 (m). HRMS calc. for C₁₆H₂₁FN₅O₄ [M + H]⁺ 668.2879, found 668.2894.

Synthesis of compound 24

To a solution of compound **23** (450 mg, 0.674 mmol) and DIPEA (0.352 mL, 2.02 mmol) in CH_2Cl_2 (7 mL) was added dropwise 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (0.180 mL, 0.809 mmol) at 0 °C and the mixture was stirred at room temperature overnight. The reaction mixture was quenched with saturated NaHCO₃ (aq.). The organic layer was washed with water and brine, dried (Na₂SO₄) and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel (60% ethyl acetate in hexanes) to give compound **24** as a white foam (354 mg, 61%).

¹H NMR (500 MHz, CD₃CN) δ 8.15 (s, 0.8H), 8.11 (s, 0.2H), 7.45–7.48 (m, 2H), 7.23–7.37 (m, 7H), 6.84–6.87 (m, 1H), 5.13–5.19 (m, 0.8H), 5.02–5.08 (m, 0.2H), 4.79–4.92 (m, 2H), 3.75–3.86 (m, 7H), 3.55–3.67 (m, 4H), 2.84–2.88 (m, 1H), 2.49–2.58 (m, 3H), 1.61–1.64 (m, 1H), 1.05–1.19 (m, 19H), 0.78–0.81 (m, 1H). ¹³C NMR (126 MHz, CD₃CN) δ 180.4, 180.4, 159.3, 159.2, 156.0, 149.0, 148.6, 148.5, 145.7, 145.7, 137.9, 136.3, 136.3, 136.3, 136.3, 130.7, 130.7, 130.6, 128.6, 128.6, 128.5, 128.5, 127.5, 127.5, 121.6, 121.6, 119.1, 119.0, 113.7, 113.7, 96.2, 95.5, 95.5, 94.7, 94.0, 93.9, 86.7, 86.7, 73.7, 73.6, 73.6, 73.5, 73.1, 73.0, 72.9, 63.8, 63.7, 60.2, 60.2, 60.0, 59.9, 59.2, 59.0, 58.7, 58.6, 55.5, 55.4, 43.7, 43.6, 43.6, 43.5, 36.2, 36.2, 34.7, 34.7, 34.5, 34.5, 24.7, 24.6, 24.6, 24.5, 24.5, 24.4, 24.3, 23.2, 23.2, 20.6, 20.6, 20.6, 20.5, 18.7, 18.7, 11.9, 11.8, 11.7, 11.6. ¹⁹F NMR (470 MHz, CD₃CN) δ -186.46 – -186.25 (m), -186.92 – -186.70 (m). ³¹P NMR (202 MHz, CD₃CN) δ 151.31 (d, *J* = 12.1 Hz), 151.31 (d, *J* = 12.1 Hz). HRMS calc. for C₄₆H₅₆FN₇O₇P [M + H]⁺ 868.3957, found 868.3962.

¹H, ¹³C, ¹⁹F and ³¹P NMR spectra for the new compounds

¹H NMR spectrum of compound **2** in DMSO- d_6

	10	20	20	40	- -			00		100		120	120	1 40	1 - 0	100	170	100	100	200	210	
0	-10	-20	-30	-40	-50	-60	-/0	-80	-90	-100	-110	-120	-130	-140	-150	-160	-1/0	-180	-190	-200	-210	-2.

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

¹H NMR spectrum of compound **8** in DMSO-*d*₆

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2
																						· .

0	-10	-20	-30	-40	-50	-60	-70	-80	-00	-100	-110	-120	-130	-140	-150	-160	-170	-180	-100	-200	-210	

¹⁹F NMR spectrum of compound **13** in DMSO- d_6

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

	1																					
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2

¹⁹F NMR spectrum of compound **16** in DMSO- d_6

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹⁹F NMR spectrum of compound **17** in CD₃CN $\frac{19}{8}$ F NMR spectrum of compound **17** in CD₃CN

³¹P NMR spectrum of compound **17** in CD₃CN $\frac{84}{54}$

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

– S64 –

¹⁹F NMR spectrum of compound **20** in DMSO- d_6

																1 .	
-12	5 -130	-135	-140	-145	-150	-155	-160	-165	-170	-175	-180	-185	-190	-195	-200	-205	-210

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-22

¹⁹F NMR spectrum of compound **23** in DMSO- d_6

 !50
 240
 230
 220
 210
 200
 190
 180
 170
 160
 150
 140
 130
 120
 110
 100
 90
 80
 70
 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40

Oligonucleotide synthesis and characterization

Oligonucleotides were synthesized on an ABI-394 DNA/RNA synthesizer using standard solidphase synthesis and deprotection protocols. A solution of 0.25 M 5-(S-ethylthio)-1H-tetrazole in acetonitrile (CH₃CN) was used as the activator. The phosphoramidite solutions (commercially available 2'-F-RNA amidites and standard RNA and DNA amidites and synthesized 2'-F-NMC amidities) were prepared at 0.15 M in anhydrous CH₃CN. The oxidizing reagent was 0.02 M I₂ in THF/pyridine/H₂O. The detritylation reagent was 3% dichloroacetic acid (DCA) in CH₂Cl₂. After completion of the automated synthesis, the oligonucleotides were manually released from support and deprotected using 30% NH₄OH and 5% diethylamine for 6 h at 55 °C. After filtration through a nylon syringe filter (0.45 μ m), oligonucleotides were either stored until purification or, in the case of RNA, the 2'-hydroxyl groups were deprotected by treating with Et₃N·3HF at 60 °C for 10 min. Oligonucleotides were purified using anion-exchange highperformance liquid chromatography (IEX-HPLC) using an appropriate gradient of mobile phase (0.15 M NaCl, 10% CH₃CN and 1.0 M NaBr, 10% CH₃CN) and desalted using size-exclusion chromatography with water as an eluent. Oligonucleotides were then quantified by measuring the absorbance at 260 nm using the following extinction coefficients: (A, 13.86 L/mol/cm; T/U, 7.92 L/mol/cm; C, 6.57 L/mol/cm; and G, 10.53 L/mol/cm). The purities and identities of modified oligonucleotides were verified by analytical anion exchange chromatography and mass spectrometry, respectively (Table S1).

		mass	(m/z)
oligonucleotide no.	sequence (5'-3')	calc.	obs.
1	rUACAGU ^{F-NMC} CUAUGU	3769.3	3768.1
2	rUACAGUC ^{F-NMC} UAUGU	3769.3	3768.3
3	rACAUAG ^{F-NMC} ACUGUA	3815.4	3814.3
4	rACAUAGA ^{F-NMC} CUGUA	3815.4	3814.6
5	$rGCG^{F-NMC}A^{F-NMC}U^{F-NMC}C^{F-NMC}U^{F-NMC}C^{F-NMC}AC$	3192.1	3191.2
6	rGCG ^F A ^F U ^F C ^F U ^F C ^F AC	3131.9	3130.9
7	dTTTTTTTTTTTTTTTTTTTTTCF-NMC	6034.9	6033.6
8	dTTTTTTTTTTTTTTTTTTTTTCF-NMCT	6034.9	6033.6
9	$dC^{F-NMC}TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$	6034.9	6033.5
10	dTC ^{F-NMC} TTTTTTTTTTTTTTTTTTTT	6034.9	6033.6
11	dTTTTTTTTTTTTTTTTTTTTC ^F	6024.9	6023.6
12	dTTTTTTTTTTTTTTTTTTTTTC ^F T	6024.9	6023.6
13	dC ^F TTTTTTTTTTTTTTTTTTTTT	6024.9	6023.6
14	dTC ^F TTTTTTTTTTTTTTTTTTTT	6024.9	6023.5

Table S1. MS (*m/z*) analysis of modified oligonucleotides ^{*a*}

^{*a*} Prefix r indicates ribonucleotide, prefix d indicates deoxyribonucleotide, superscript F indicates 2'-F-RNA, superscript F-NMC indicates 2'-F-NMC.

LC-MS profiles of modified oligonucleotides

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.779	MF	0.0372	25.83503	11.56033	0.9976
2	6.842	FM	0.0403	2545.59912	1052.68103	98.3003
3	7.227	MM	0.0570	18.18183	5.31740	0.7021
Totals :				2589.61598	1069.55877	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	3768.07	193519	100.00
В	2512.05	99297	51.31
С	3790.73	24010	12.41
D	4521.15	11440	5.91
E	3806.24	11093	5.73
F	1886.66	2866	1.48

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.034	MF	0.1273	5.89655	7.72295e-1	0.1545
2	11.167	FΜ	0.0995	3.31813	5.55868e-1	0.0869
3	11.305	MF	0.1199	4.14789	5.76448e-1	0.1087
4	11.519	MF	0.1168	15.47070	2.20845	0.4053
5	11.753	MF	0.0986	3743.53467	632.88232	98.0731
6	12.037	FM	0.1223	20.61416	2.81020	0.5400
7	13.162	MF	0.0776	15.07630	3.23634	0.3950
8	13.248	FM	0.0823	9.02758	1.82825	0.2365
Totals :				3817.08598	644.87017	
Componen	t Molec	ular	Absolute	e Relative	2	
	Weig	ŋht	Abundanc	e Abundance	e	
A	3768	.33	180907	100.00		
R	3789	17	21956	12 14		

в 3789.17 21956	12.14
C 3806.07 8885	4.91
D 4522.13 8146	4.50
E 7559.83 6072	3.36
F 1913.41 3013	1.67

Peak #	RetTime	Туре	Width	Area	Height	Area
#	[[[]]]]		[[[[]]]]	[IIIAU^S]		6
1	6.945	MF	0.0349	20.62556	9.84293	0.8475
2	6.987	FM	0.0387	15.62788	6.72436	0.6421
3	7.099	FM	0.0395	2350.24292	991.69318	96.5700
4	7.202	FM	0.0328	7.47550	3.79936	0.3072
5	7.261	FM	0.0395	20.20444	8.52857	0.8302
6	7.366	FM	0.0421	19.54237	7.73297	0.8030
Totals :				2433.71867	1028.32136	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
А	3814.28	240861	100.00
В	3836.38	28399	11.79
С	3852.29	10562	4.39
D	1911.86	8272	3.43
E	7648.09	4892	2.03
F	1915.94	2916	1.21

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.608	MF	0.0406	5.12765	6.76424	0.1891
2	6.729	FM	0.0658	8.73744	1087.47449	0.3222
3	6.853	FM	0.0410	16.64358	6.76424	0.6137
4	7.017	FM	0.0404	2633.75317	1087.47449	97.1208
5	7.124	FM	0.0317	5.75520	3.02896	0.2122
6	7.181	FM	0.0440	17.18426	6.50296	0.6337
7	7.288	FM	0.0460	24.63130	8.92478	0.9083
Totals :				2711.83259	1117.01522	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	3814.58	261723	100.00
В	3836.27	28580	10.92
С	4577.05	16613	6.35
D	3851.86	12774	4.88
E	7650.64	9363	3.58
F	2179.16	4006	1.53

LC-MS of oligonucleotide 5

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	9.389	BB	0.0405	5.62434	2.18961	0.2352
2	9.587	MF	0.0452	2174.02734	801.21161	90.9201
3	9.705	FM	0.0456	85.92779	31.39135	3.5936
4	9.884	MM	0.0435	125.56005	48.09347	5.2511
Totals :				2391.13953	882.88603	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	3191.15	3290006	100.00
В	3213.04	261456	7.95
С	1506.31	116857	3.55
D	870.98	101509	3.09
E	2165.62	86278	2.62
F	9121.79	69561	2.11
G	3228.90	57053	1.73
Н	6404.45	48157	1.46
I	1189.01	35256	1.07

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	6.604	BB	0.0348	5.30078	2.35100	0.2352
2	6.996	MM	0.0519	7.47577	2.40067	0.3317
3	7.198	MF	0.0364	2231.72876	1021.93787	99.0087
4	7.311	FM	0.0698	9.56738	2.28580	0.4244
Totals :				2254.07269	1028.97534	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
А	3130.89	2925074	100.00
В	3152.93	220007	7.52
С	3168.87	45694	1.56
D	6283.79	42364	1.45

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.226	MF	0.0648	34.96468	8.99796	0.3342
2	18.322	MF	0.0780	149.83298	32.03236	1.4320
3	18.379	FM	0.0536	53.81436	16.73637	0.5143
4	18.561	FM	0.0982	1.00839e4	1711.43762	96.3770
5	19.108	MM	0.1116	140.46207	20.97394	1.3425
Totals :				1.04630e4	1790.17825	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6033.57	1068765	100.00
В	6055.79	48914	4.58
С	6070.96	21501	2.01

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	18.693	MF	0.1279	9.33245	1.21628	0.1799
2	19.020	FΜ	0.1154	66.45992	9.59986	1.2808
3	19.213	FM	0.0932	5068.98975	906.52277	97.6912
4	19.720	FM	0.1172	44.00722	6.25764	0.8481
Totals :				5188.78933	923.59654	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6033.59	572332	100.00
В	6055.43	75402	13.17
С	6076.11	7580	1.32

Signal	1:	DAD1	Ε,	Sig=260,4	Ref=400,50
			<i>-,</i>		

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.858	MF	0.0841	7.61968	1.51046	0.1142
2	18.111	MF	0.1028	4.51722	7.32179e-1	0.0677
3	18.266	MF	0.0907	6.80644	1.25035	0.1021
4	18.339	MF	0.0844	45.13523	8.90776	0.6767
5	18.559	MF	0.0773	31.68493	6.83555	0.4751
6	18.594	FM	0.0684	37.34602	9.09903	0.5599
7	18.774	MF	0.0869	6379.74902	1222.99255	95.6544
8	18.960	FM	0.0894	76.18241	14.19998	1.1422
9	19.277	MF	0.1035	66.55429	10.71249	0.9979
10	19.436	MF	0.1190	9.35565	1.31053	0.1403
11	19.677	FM	0.1457	4.63365	5.29995e-1	0.0695
Totals :				6669.58454	1278.08089	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6033.54	395110	100.00
В	6055.67	24989	6.32

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.938	MF	0.0753	10.69759	2.36644	0.1173
2	18.112	FM	0.1420	3.85287	4.52311e-1	0.0423
3	18.358	FM	0.0946	18.94757	3.33801	0.2078
4	18.551	MF	0.0870	159.26486	30.52726	1.7465
5	18.691	FM	0.0922	8684.20703	1570.49268	95.2314
6	18.884	FM	0.0865	125.28930	24.12666	1.3739
7	19.210	FM	0.0998	104.36846	17.43545	1.1445
8	19.385	FM	0.0817	8.93343	1.82279	0.0980
9	19.612	FM	0.1197	3.49753	4.86936e-1	0.0384
Totals :				9119.05863	1651.04852	
	+ Malaa		Nh e e l e t			

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6033.62	503790	100.00
В	6057.73	20133	4.00

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.036	MF	0.0917	38.39970	6.97909	0.5674
2	18.118	FM	0.0756	205.98582	45.39040	3.0438
3	18.253	MF	0.0817	4698.72803	958.45923	69.4319
4	18.391	FM	0.0789	1658.76025	350.57336	24.5111
5	18.590	MF	0.0991	30.96471	5.20635	0.4576
6	18.800	MF	0.0962	110.76262	19.19070	1.6367
7	18.879	FM	0.0730	23.79322	5.43442	0.3516
Totals	:			6767.39435	1391.23356	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6023.56	680634	100.00
В	6047.94	43498	6.39
С	6061.89	17038	2.50

Signal 1: DAD1 E, Sig=260,4 Ref=400,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	11.275	MM	0.0909	40.15033	7.36323	0.3542
2	12.822	MM	0.0892	43.72666	8.17193	0.3857
3	13.927	MM	0.0858	44.32454	8.61037	0.3910
4	14.776	MM	0.0830	44.32454	8.94593	0.3929
5	15.435	MM	0.0789	43.57689	9.20867	0.3844
6	15.988	MM	0.0901	47.30423	8.75251	0.4173
7	16.482	MM	0.0857	44.19102	8.59180	0.3898
8	16.914	MM	0.0892	57.38834	10.72132	0.5062
9	17.915	MF	0.2234	263.10620	19.62890	2.3208
10	18.093	FM	0.0661	49.64504	12.51488	0.4379
11	18.178	FM	0.1075	373.91949	57.99459	3.2982
12	18.378	FM	0.0991	9833.24023	1654.43323	86.7360
13	18.663	FM	0.1265	238.37929	31.41087	2.1027
14	18.945	FM	0.1033	197.03368	31.80303	1.7380
15	19.160	FM	0.1217	16.45735	2.25354	0.1452
Totals :				1.13370e4	1880.40481	
Component	t Molec	ular	Absolute	Relative	2	
	Weig	ght	Abundance	e Abundance	e	
A	6023	.58	1424615	100.00		
В	6045	.66	72458	5.09		
С	6061	.21	33996	2.39		

33996

Peak #	RetTime	Туре	Width	Area	Height	Area º
π	[1111]		[111]			0
1	18.186	MF	0.0665	43.95890	11.02158	0.5224
2	18.274	FM	0.0884	52.40604	9.87683	0.6228
3	18.467	FM	0.0929	8157.22119	1462.82361	96.9387
4	18.691	FM	0.0845	82.08432	16.18163	0.9755
5	19.018	FM	0.1049	79.15268	12.57681	0.9406
Totals :				8414.82313	1512.48045	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
A	6023.57	846699	100.00
В	6045.22	37876	4.47
С	6062.31	17979	2.12
D	2019.25	11223	1.33

Signal i Ondi d, Sig 200, i net i $00, 5$	Signal	⊥:	DADI	E,	Sig=260,4	Rei=400,5
---	--------	----	------	----	-----------	-----------

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.992	MF	0.0564	17.45490	5.16025	0.0966
2	18.041	MF	0.0753	62.21910	13.77304	0.3442
3	18.165	FM	0.0689	373.21851	90.24255	2.0650
4	18.287	MF	0.0841	7819.15283	1549.55908	43.2620
5	18.423	FM	0.0985	9408.15918	1592.34009	52.0537
6	18.653	MF	0.0874	120.86180	23.05918	0.6687
7	18.871	MF	0.0941	177.75880	31.49580	0.9835
8	18.976	FM	0.0939	95.13191	16.88994	0.5263
Totals :				1.80740e4	3322.51994	

Component	Molecular	Absolute	Relative
	Weight	Abundance	Abundance
А	6023.52	2267977	100.00
В	6044.57	89491	3.95
С	6061.12	55432	2.44
D	2418.85	15687	0.69

Thermal melting studies

UV melting curves were recorded using a Cary 4000 Scan UV-Visible Spectrophotometer. The concentration of oligonucleotide was 2 μ M, and samples were prepared in PBS buffer (137 mM sodium chloride, 2.7 mM potassium chloride, 8 mM sodium phosphate dibasic, and 2 mM potassium phosphate monobasic, pH 7.4). Samples were annealed by heating to 85 °C and then slowly cooled to 10 °C. Samples were then heated to 85 °C at a gradient of 1 °C/min, and the change in UV absorbance at 260 nm was recorded. The melting temperature was calculated from the first derivative of the melting curve.

Table S2. UV melt	ing temperatures of du	plexes containing 2	2'-F-NMC : 2'	-F-NMC base
pairs and their cor	nparison to those carry	ying 2'-F-RNA : 2'-	F-RNA base	pairs.

ontra	dunlar	$T_{\rm m}^{\rm a}$ (ΔT	$T_{\rm m}$) (°C) ^b
entry	duplex	2'-F-NMC	2'-F
1	5'-UACAG <mark>U</mark> CUAUGU 3'-AUGUC <mark>A</mark> GAUACA	53.2 (-0.4)	55.0 (1.4)
2	5'-UACAGU <mark>C</mark> UAUGU 3'-AUGUCA <mark>G</mark> AUACA	51.4 (-2.2)	55.6 (2.0)

^a $T_{\rm m}$ values were obtained in PBS (pH 7.4) using 2.0 μ M concentrations of each strand. ^b $\Delta T_{\rm m}$ is the difference in melting temperature between the duplex with the modified strand and the unmodified reference duplex (5'-UACAGUCUAUGU-3':3'-AUGUCAGAUACA-5', $T_{\rm m} = 53.6$ °C).

duplex no.	duplex type ^b	duplex ^c
1	RNA ¹ : cRNA ¹	5'-UACAGUCUAUGU 3'-AUGUCAGAUACA
2	RNA(U ^{F-NMC}): cRNA ¹	5'-UACAG <mark>U^{F-NMC}CUAUGU (1)</mark> 3'-AUGUCAGAUACA
3	RNA(C ^{F-NMC}): cRNA ¹	5'-UACAGU <mark>C^{F-NMC}UAUGU (2)</mark> 3'-AUGUCAGAUACA
4	RNA ¹ : cRNA(G ^{F-NMC})	5'-UACAGUCUAUGU 3'-AUGUC <mark>A^{F-NMC}GAUACA (3)</mark>
5	RNA^1 : $cRNA(A^{F-NMC})$	5'-UACAGUCUAUGU 3'-AUGUCA <mark>G^{F-NMC}AUACA (4)</mark>
6	$RNA(U^F)$: $cRNA^1$	5'-UACAG <mark>U^f</mark> CUAUGU 3'-AUGUCAGAUACA
7	$RNA(C^F)$: $cRNA^1$	5'-UACAGU <mark>C</mark> ^F UAUGU 3'-AUGUCAGAUACA
8	RNA^1 : $cRNA(G^F)$	5'-UACAGUCUAUGU 3'-AUGUC <mark>A</mark> FGAUACA
9	RNA^1 : $cRNA(A^F)$	5'-UACAGUCUAUGU 3'-AUGUCA <mark>G</mark> FAUACA

Table S3. Duplexes analyzed for $T_{\rm m}$ studies ^a

10	$RNA(U^{F-NMC})$: $cRNA(A^{F-NMC})$	5'-UACAG <mark>U^{F-NMC}CUAUGU (1)</mark> 3'-AUGUC <mark>A^{F-NMC}GAUACA (4)</mark>
11	RNA(C ^{F-NMC}): cRNA(G ^{F-NMC})	5'-UACAGU <mark>C^{F-NMC}UAUGU (2)</mark> 3'-AUGUCA <mark>G^{F-NMC}AUACA (3</mark>)
12	$RNA(U^F)$: $cRNA(A^F)$	5'-UACAG <mark>U^F</mark> CUAUGU 3'-AUGUC <mark>A^F</mark> GAUACA
13	$RNA(C^F)$: $cRNA(G^F)$	5'-UACAGU <mark>C^f</mark> UAUGU 3'-AUGUCA <mark>G^f</mark> AUACA
14	RNA ² : cRNA ²	5'-GCGAUCUCAC 3'-CGCUAGAGUG
15	RNA(B ^{F-NMC}): cRNA ²	5'-GCG ^{F-NMC} A ^{F-NMC} U ^{F-NMC} C ^{F-NMC} U ^{F-NMC} C ^{F-NMC} AC (5) 3'-CGCUAGAGUG
16	RNA(B ^F): cRNA ²	5'-GC <mark>G^FA^FU^FC^FU^FC^F</mark> AC (6) 3'-CGCUAGAGUG

^{*a*} Superscript F indicates 2'-F-RNA, superscript F-NMC indicates 2'-F-NMC. ^{*b*} lower case c in each duplex type, (e.g. cRNA) refers to the complementary strand. ^{*c*} Numbers in parentheses indicate numbers from Table S1.

Circular dichroism spectroscopy

The circular dichroism (CD) spectra were obtained on a Jasco J-815 spectropolarimeter equipped with a Julabo F25 circulating bath. The sample was allowed to equilibrate for 5 min at 15 °C in PBS (137 mM sodium chloride, 2.7 mM potassium chloride, 8 mM sodium phosphate dibasic, and 2 mM potassium phosphate monobasic, pH 7.4) at a final concentration of 2.61 μ M of duplex. The spectrum was an average of 5 scans. Spectra were collected at a rate of 50 nm/min with a bandwidth of 1 nm and at a sampling wavelength of 0.2 nm using fused quartz cells (Starna 29-Q-10) at a temperature of 15 °C. The CD spectra were recorded from 350 to 200 nm. The molar ellipticity was calculated from the equation [θ] = θ /10Cl, where θ is the ellipticity (mdeg), C is the molar concentration of oligonucleotides (M), and 1 is the path length of the cell (cm). The data were processed using software supplied by JASCO and were transferred into Microsoft Excel for presentation.

duplex no.	duplex type	duplex ^b
1	RNA: cRNA	5'-UACAGUCUAUGU 3'-AUGUCAGAUACA
2	RNA(U ^{F-NMC}): cRNA	5'-UACAG <mark>U^{F-NMC}CUAUGU (1)</mark> 3'-AUGUCAGAUACA
3	RNA(U ^{F-NMC}): cRNA(A ^{F-NMC})	5'-UACAG <mark>U^{F-NMC}CUAUGU (1)</mark> 3'-AUGUCA ^{F-NMC} GAUACA (4)

^a Superscript F-NMC indicates 2'-F-NMC. ^b Numbers in parentheses indicate numbers from Table S1.

Exonuclease assays

Oligonucleotides were prepared at a final concentration of 0.1 mg/mL in either 50 mM Tris (pH 7.2) and 10 mM MgCl₂ or 50 mM sodium acetate (pH 6.5) and 10 mM MgCl₂ for assays in the presence of 3'-specific or 5'-specific exonucleases, respectively. The exonuclease (75 mU/mL SVPD or 500 mU/mL PDE-II) was added to oligonucleotide solution immediately prior to the first injection onto the HPLC column, and enzymatic degradation kinetics were monitored for 24 h at 25 °C. Samples collected over 24 h were injected directly onto a Dionex DNAPac PA200 analytical column at 30 °C column temperature. The gradient was from 37% to 52% 1 M NaBr, 10% CH₃CN, 20 mM sodium phosphate buffer at pH 11 over 10 min with a flow rate of 1 mL/min. The amount of 20-mer or 19-mer (for experiment with dT₁₈C^{F-NMC}dT) was determined as the area under the curve of the peak detected at A₂₆₀. Percent full-length ON was calculated by dividing the area under the curve at the first time point and multiplying by 100. Activity of enzyme was verified for each experiment by including a oligodeoxythymidylate with a terminal phosphorothioate linkage dT₂₀ in each experiment. Each aliquot of enzyme was thawed just prior to the experiment. The half-life was determined by fitting to first-order kinetics. Each degradation experiment was run in duplicate.

Figure S2. UV trace from HPLC data of HPLC/mass spectra for oligonucleotides carrying multiple modifications: Comparison of hydrophobicities of 2'-F-NMC, RNA, and 2'-F-RNA

^{*a*} Superscript F-NMC indicates 2'-F-NMC. Superscript F indicates 2'-F-RNA. Numbers in parentheses indicate numbers from Table S1. Conditions: The analysis was performed on C8 columns using buffer A (95 mM hexafluoroisopropanol (HFIP)-16 mM TEA buffer) and buffer B (methanol).

Modeling study

The model shown in Figure 1 was built using the program UCSF Chimera² starting from an RNA duplex, riboses in one strand were replaced by 2'-F-NMC sugars with a C2'-*exo* pucker without altering backbone or glycosidic torsion angles.

References

(1) Jung, M. E.; Dwight, T. A.; Vigant, F.; Ostergaard, M. E.; Swayze, E. E.; Seth, P. P. Angew. Chem. Int. Ed. 2014, 53, 9893.

(2) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. *J. Comput. Chem.* **2004**, *25*, 1605.