Limits of RNA 2'-OH Mimicry by Fluorine: Crystal Structure of *Bacillus* halodurans RNase H Bound to a 2'-FRNA:DNA Hybrid

Pradeep S. Pallan,[†] Thazha P. Prakash,[‡] Arnie R. de Leon,[†] and Martin Egli^{*,†}

[†]Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States [‡]Department of Medicinal Chemistry, Ionis Pharmaceuticals Inc., Carlsbad, California 92010, United States

Supporting Information

ABSTRACT: RNase H1 cleaves the RNA strand of RNA:DNA hybrids. Replacement of RNA 2'-hydroxyls by fluorine (FRNA) is commonly used to stabilize aptamers and siRNAs. However, FRNA:DNA hybrids fail to elicit RNase H activity. The underlying reasons are unclear, as 2'-OH groups are not directly involved in cleavage. We determined the crystal structure of *Bacillus halodurans* RNase H bound to a FRNA:DNA hybrid. The structure points to dynamic (slippage of the FRNA:DNA hybrid relative to the enzyme), geometric (different curvatures of FRNA:DNA and RNA:DNA hybrids), and electronic reasons (Mg²⁺ absent from the active site of the FRNA:DNA complex) for the loss of RNaseH activity.

Ribonuclease H (RNase H) hydrolyzes the RNA of RNA:DNA hybrid duplexes endonucleolytically, resulting in cleavage products with 5'-phosphate and 3'-hydroxyl termini.¹⁻⁴ RNases H are divided into types 1, called RNase HI (prokaryotes) and RNase H1 (eukaryotes), and 2, called RNase HII (prokaryotes) and RNase H2 (eukaryotes).⁵ Human RNase H1 is a single protein and appears to play a role in mitochondrial DNA replication.⁶ Human RNase H2 consists of three subunits, and mutations in these cause Aicardi-Goutiéres syndrome, a neurological disorder.⁷

Crystal structures of RNA:DNA hybrids bound to the catalytic domains of Bacillus halodurans RNase HI (BhRNase H)⁸ and human RNase H1 (HsRNase H)9 revealed shared features in terms of the active site, recognition, and duplex conformation, as well as differences between the enzymes from prokaryotes and eukaryotes. The structural data are consistent with a two-metal ion mechanism (Mg^{2+}) in both cases, with conserved residues involved in metal ion coordination [D71, E109, D132, E188, and D192 in BhRNase H (Figure 1) and D145, E186, D210, and D274 in HsRNase H]. The specificity of the enzymes for the hybrid duplex is grounded in A- and B-form conformations of the RNA and DNA strands, respectively, that result in a unique width of the minor groove, the site contacted by RNase H. Five consecutive ribose 2'-hydroxyl groups that are contacted by four amino acids in the complex of BhRNase H allow the enzyme to distinguish between RNA and DNA.8 The scissile phosphate group is accommodated at the active site and is engaged in direct interactions with metal ions A (production of the hydroxy anion nucleophile) and B (leaving group stabilization) (Figure 1). A phosphate group of the DNA strand 2 bp from the scissile phosphate (in the RNA 5'-direction) is lodged at the so-called

Figure 1. Active site of *Bh*RNase H bound to an RNA:DNA hybrid (Protein Data Bank entry 1zbi⁸). Mg^{2+} ions are colored green, RNA carbons yellow, with the phosphorus atom of the scissile phosphate shown as a sphere, side chain carbons of Glu and Asp coordinated to Mg^{2+} magenta, and waters cyan, exept for those involved in nucleophilic attack and leaving group protonation (black spheres and arrows, respectively).

phosphate binding pocket, such that the enzyme bridges RNA and DNA across the minor groove. In the structure of the HsRNase H substrate complex, the enzyme establishes more extensive interactions with the DNA compared with the structure of the bacterial complex and the conformation of the DNA strand varies between the B- and A-forms near a basic protrusion that is missing in *Bh*RNase H.^{8,9}

The mechanism of RNase H cleavage was further probed by crystal structures of product complexes with different *Bh*RNase H mutant proteins.¹⁰ Accordingly, the two metal ions are separated by ~4 Å upon binding of the enzyme to the hybrid duplex. Mg^{2+}_A shows the standard octahedral coordination geometry and activates and orients a water molecule for nucleophilic attack (Figure 1). Unlike that of metal ion A, the coordination of Mg^{2+}_B is irregular, but following formation of the pentacovalent transition state, concomitant shortening of the distance between the two metal ions to ~3.5 Å, and finally release of the 5'-phosphate and 3'-hydroxyl groups, Mg^{2+}_B reaches a regular octahedral coordination state that involves two water molecules.¹⁰ E188, the fifth acidic amino acid at the active site of

```
Received:August 18, 2016Revised:September 7, 2016Published:September 9, 2016
```

*Bh*RNase H, facilitates efficient product release. Importantly, with respect to a potential role of RNA 2'-hydroxyl groups in RNase H activity, only one 2'-oxygen is situated in the proximity of the active site [E109 (Figure 1)]. However, the structural analyses do not directly implicate 2'-hydroxyl groups in the cleavage mechanism.^{4,8,10}

RNase H is considered a key player in antisense oligonucleotide (AON)-mediated degradation of RNA.^{11–14} However, most chemically modified AONs paired with RNA as well as all-RNA and -DNA duplexes do not elicit cleavage by RNase H and function as competitive inhibitors instead.^{15–17} Phosphorothioate-DNA (PS-DNA)¹⁸ and 2'-deoxy-2'-fluoro-arabinonucleic acid (FANA)¹⁹ are two of only a handful of modifications that are tolerated in fully modified AONs opposite RNA by RNase H. Thus, the enzyme is unable to cleave RNA bound to complementary, fully 2'-modified AONs.^{20,21} A common strategy for circumventing this limitation is the use of gapmer AONs with various 2' modifications in the wings combined with a central PS-DNA window that permits RNase H action.^{14,22} Whereas the effects of modifications in the DNA (antisense) strand on RNase H activity have been studied extensively, the consequences of an altered RNA (sense) strand have been assessed for only a limited number of analogues, e.g., oligo-2'deoxy-2'-fluoro-ribonucleotide (FRNA)¹¹ and oligo-2'-O-methyl-ribonucleotide.¹⁵ Considering that ribose 2'-hydroxyl groups do not seem to participate in cleavage action, it is unclear why FRNA is not tolerated in the sense strand of the hybrid duplex (Figure 2).¹¹ Conversely, extensive 2'-F modification of both

Figure 2. RNase H cleavage assays with RNA:DNA and FRNA:DNA duplexes in the presence of Mg^{2+} or Mn^{2+} . The reaction conditions were as follows: 50 nM RNA(FRNA):DNA (FRNA/RNA = 5'-GACACCU-GAUUC-3'), 0–25 nM RNase H, 50 mM Tris-HCl (pH 7.9), 50 mM NaCl, 1 mM DTT, 20 μ g/mL BSA, and 4% glycerol.

sense and antisense strands of siRNA duplexes and opposite the cleavage site in the target RNA does not hamper the activity of the RISC Ago2 enzyme in the RNAi pathway.²⁴

To gain a better understanding of the origins of the inability of RNase H to process FRNA paired to DNA, we determined the crystal structure of *Bh*RNase H bound to an FRNA:DNA dodecamer duplex. The sequence of the hybrid duplex matches that in the structure of the complex with native RNA:DNA⁸ (Figure 3A). As in the case of that structure, we used the D132N mutant of the enzyme that prevents cleavage of RNA even in the presence of both Mg²⁺ ions (Figure 1). The FRNA strand was synthesized following published protocols.²⁵ Crystals of the complex with FRNA:DNA were grown under conditions that differ from those used for the complex with the native substrate. In particular, the pH of the crystallization condition [0.4 M ammonium phosphate (pH 5)] (Supporting Information) is

Figure 3. (A) Sequence of RNA(red):DNA⁸ and FRNA(green):DNA hydrids in RNase H cocrystals. Relative shifts of FRNA:DNA duplexes and occupancies in the P1 unit cell are indicated. Scissors mark scissile phosphates in RNA, and X marks the lack of cleavage with FRNA. (B) Unit cell content and relative orientations of the three duplexes in the FRNA:DNA complex. (C) Quality of the final Fourier $2F_o - F_c$ sum electron density (~1 σ threshold). Adjacent pairs with overlaid base triples bound to RNaseH A (B) are depicted. The bromine of U4 is shown as a yellow sphere.

reduced by ~2 units compared to that of the complex with RNA:DNA⁸ [Tris-HCl (pH 7.5)]. The structure of the FRNA:DNA complex was phased by molecular replacement, using the apo form of *Bh*RNase H (D132N mutant) as the search model, and refined to a resolution of 1.50 Å (Table S1).

The triclinic P1 unit cell contains two RNase H molecules and a single duplex and therefore matches the contents of the asymmetric unit of the crystal with the native substrate that is of monoclinic space group C2. However, the position of the FRNA:DNA duplex is 3-fold disordered, with occupancies of 0.4, 0.4, and 0.2 for individual orientations along the helical stack, as established by a Br⁵U modification in the DNA strand (Figure 3 and Figure S1). Slipping by the FRNA:DNA duplex likely has its origin in the weakened ability of RNase H to hold on to the FRNA strand compared with RNA. Among side chains interacting with RNA 2'-OH groups, active site E109 is the only one that establishes a direct H-bond with a 2'-OH [from the ribose that carries the leaving group O3' (Figure 1)]. Fluorine is unable to act as a donor, and thus, the stabilizing effect of the interaction in the complex with RNA substrate is lost. The distances between E109(O ϵ 2) and F2' range from 3.02 to 3.39 Å (RNase H A) and from 2.99 to 3.35 Å [RNase H B (for a detailed list of all F2' contacts, see Table S2)]. By comparison, the corresponding distances between E109 and O2' in the structure of the D132N mutant with RNA are 2.75 and 2.90 Å, and in the structure of the D192N mutant with RNA, they are 2.78 and 2.81

Biochemistry

Å.⁸ When examining these interactions, one needs to keep in mind the smaller size of fluorine relative to oxygen, and the fact that despite short distances involving fluorine in some cases (Table S2), there is no stabilizing effect.

Both RNase H molecules per unit cell accommodate three superimposed FRNA strands at their active site. The particular shifts between individual duplexes result in overlays of various combinations of Watson-Crick base pairs. Thus, fC:dG/fC:dG, fU:dA/fC:dG, and fU:dA/fU:dA flank the scissile phosphate at the active site of RNase H B (Figure 3A,B). However, at other steps, two purines are combined with a pyrimidine in one strand, two pyrimidines with a single purine in the other, etc. The particular sequence of the 12mer studied precludes conservation of a particular base pair as a result of the shifts between duplexes. Unlike the significant geometric deviations between individual overlaid bases in some cases, the sugar-phosphate backbones of both FRNA and DNA display only minimal differences (Figure 3B,C and Figure S1). Therefore, phosphate groups from individual duplexes are nearly perfectly superimposed at the active sites. In the case of RNase H A, only two duplexes contribute a phosphate because the enzyme molecule binds at the transition between adjacent (symmetry-related) "blue" duplexes. The other RNase H molecule (B) binds at a site that features superimposed phosphates from the FRNA strands of blue, green, and orange duplexes (Figure 3).

Replacement of the 2'-hydroxyl group with fluorine preserves the preference of the ribose for a C3'-endo conformation, and both RNA and FRNA duplexes adopt an overall A-form geometry.²⁶ However, inspection of the structures of the BhRNase H complexes with native RNA:DNA and FRNA:DNA hybrids reveals virtually identical conformations of the protein, but subtle differences between the conformations of the two duplex types. An overlay of the structures shows slightly different curvatures of the FRNA and RNA strands as well as the DNA portions (Figure 4). In addition, corresponding base pairs in the two duplexes (green FRNA:DNA) do not overlap in the superimposed structures in many cases. The root-mean-square deviation (rmsd) for phosphorus atoms is \sim 1.9 Å. Inclusion of all atoms reduces the rmsd to ~ 1.5 Å (Figure S2). Comparing only the P atoms of the FRNA and RNA strands gives an rmsd of ~1.3 Å, and the rmsd for DNA P atoms alone is \sim 2.0 Å. To gain a better understanding of the geometrical differences between the two duplexes, we calculated helical parameters using Curves²⁷ (Figure S3 and Tables S3-S6). Among global base pair axis parameters, both x- and y-displacements show a difference of ~0.3 Å (-3.85/-0.17 Å, FRNA:DNA; -4.15/0.20 Å, RNA:DNA). The inclination angle is 3° in both cases. The helical rise and twist are also similar: 3.13 Å and 31° for FRNA and 3.15 Å and 30° for RNA, respectively. Conversely, there is a sizable difference in overall axis bend (angle between terminal base pairs) of 10° between the FRNA:DNA and RNA:DNA duplexes (0° and 10°, respectively). However, the deviating curvatures that are also visible in Figure 4 appear not to be of much consequence for the dimensions of the minor groove. Thus, in the FRNA:DNA duplex, the minor groove width (8.3 Å)and depth (2.1 Å) are comparable to the corresponding values in the RNA:DNA duplex (8.4 and 2.4 Å, respectively). Average distances between phosphorus atoms from opposite strands roughly normal to the minor groove (14.1 Å, FRNA; 14.3 Å, RNA) are also consistent with similar widths.

The two-metal ion mechanism is key to the endonucleolytic activity of RNase H. Crystallization with the D132N mutant prevents cleavage in the presence of Mg^{2+} , although both metal

Figure 4. Comparison between the crystal structures of *Bh*RNase H in complex with FRNA:DNA and RNA:DNA⁸ hybrids. Superimpositions using both protein and nucleic acid components of the two complexes are (A) viewed across the major and minor grooves, with the FRNA/RNA strands in the foreground, (B) rotated around the vertical by 180°, with the DNA strands in the foreground, and (C) rotated around the vertical by 90° relative to panel A and viewed along the stacking direction.

ions are still present in the crystal structure with the native RNA:DNA hybrid (Figure 1).⁸ However, in the structure of the complex with the FRNA:DNA hybrid, these metal ions are missing at the active site of RNase H (Figure 5A), despite a Mg^{2+} concentration used in the crystallizations [5 mM (see the Supporting Information)] that matches that leading to growth of crystals with the native hybrid.⁸ Comparison with the corresponding active site in the complex with the RNA:DNA hybrid reveals that many water molecules in and around the active site assume similar positions (Figure 5A). At the location formerly occupied by metal ion A, both E188 and D192 in the FRNA:DNA complex display altered orientations compared to the RNA:DNA complex. E188 is detached from the FRNA backbone in the former, and D192 has shifted somewhat closer to the FRNA phosphate as a result of the missing metal ion (Figure 5A). Similarly, inspection of the adjacent metal ion B site shows that D71 and N132 have inched closer to the FRNA backbone in the absence of Mg²⁺. F2' (FRNA) and O2' (RNA) are 3.0 and 2.9 Å from $O\varepsilon_2$ of E109, respectively, in the two structures, but the average distance between carboxylate oxygens of D71 and OP1 of the scissile phosphate (2.94 Å) is 0.5 Å shorter in the structure with the FRNA:DNA hybrid compared to that of the native complex (3.45 Å). In addition, N δ of N132 is 0.2 Å closer to OP1 in the structure with the FRNA:DNA hybrid (3.0 Å) than in the native complex (3.2 Å). At the active site of the second RNase H molecule (RNase H A), metal ion A is also absent, but we assigned Na⁺ to site B in the complex with the FRNA:DNA hybrid (Figure 5B).

In summary, the crystal structure of *Bh*RNase H in complex with an FRNA:DNA hybrid duplex reveals three key differences from the complex with the RNA:DNA hybrid. These concern the RNase H—hybrid interaction (3-fold disordered FRNA:DNA hybrid vs single orientation of the RNA:DNA hybrid),

Figure 5. Active site configurations in the *Bh*RNase H complex with the FRNA:DNA hybrid. (A) The FRNA 5'-UpU-3' step lodged at the active site of RNase H B (see Figure 3), with the overlaid RNA 5'-ApU-3' step, bound at the active site of RNase H in the structure of the complex with the native RNA:DNA hybrid.⁸ No metal ions are observed in the complex with the FRNA:DNA hybrid at that site, whereas the complex with the RNA:DNA hybrid features two Mg²⁺ ions (magenta spheres). The color code matches that in Figure 4, and dashed lines indicate coordination geometries of Mg²⁺. (B) The FRNA 5'-CpC-3' step lodged at the active site of RNase H A. Metal ion A is absent, and the site formerly occupied by Mg²⁺_B in the RNA:DNA complex [5'-ApU-3' (panel A and Figure 1)] is now taken by a Na⁺ ion (yellow; dashed lines indicate coordination).

duplex conformation (deviating strand curvatures), and stereoelectronics (absence vs presence of two Mg²⁺ ions, respectively). Although the latter observation alone can explain the lack of FRNA cleavage (Figure 2), it is likely that the differences in protein binding and duplex conformation due to replacement of 2'-OH with 2'-F also lead to inhibition of RNase H. Our structural data show that fluorine cannot mimic the hydroxyl group with regard to the need by RNase H to properly hold on to the RNA backbone to execute cleavage. The conformational differences between the FRNA:DNA and RNA:DNA hybrids, although subtle, are perhaps surprising given the well-established notion that both 2'-ribonucleotides and 2'-deoxy-2'-fluororibonucleotides prefer the C3'-endo sugar pucker. However, the lack of FRNA processing is not caused by the direct involvement of fluorine in the cleavage mechanism, as neither OH (RNA) nor F (FRNA) lies close to the water nucleophile and the higher electronegativity of F relative to that of O is expected to facilitate nucleophilic attack at the phosphate and 3'-OH leaving group stabilization.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.bio-chem.6b00849.

Methods and materials, Figures S1 (electron density), S2 (structural superimpositions), and S3 (helical geometry graphs), and Tables S1 (crystallographic data), S2 (F2'– vs O2'–protein contacts), and S3–S6 (FRNA:DNA and RNA:DNA duplex geometries calculated with Curves) (PDF)

Accession Codes

The Protein Data Bank entry for the complex is 5SWM.

AUTHOR INFORMATION

Corresponding Author

*E-mail: martin.egli@vanderbilt.edu. Phone: 1-615-343-8070.

Fundina

Supported by Vanderbilt University.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Stein, H., and Hausen, P. (1969) Science 166, 393-395.

(2) Hostomsky, Z., Hostomska, Z., and Matthews, D. A. (1993) in *Nucleases* (Linn, S. M., Lloyd, S. R., and Roberts, R. J., Eds.) 2nd ed., pp 341–376, Cold Spring Harbor Laboratory Press, Plainview, NY.

(3) Ohtani, N., Haruki, M., Morikawa, M., and Kanaya, S. (1999) J. Biosci. Bioeng. 88, 12–19.

(4) Yang, W., Lee, J. Y., and Nowotny, M. (2006) Mol. Cell 22, 5-13.

(5) Cerritelli, S. M., and Crouch, R. J. (2009) FEBS J. 276, 1494–1505.

(6) Cerritelli, S. M., Frolova, E. G., Feng, C., Grinberg, A., Love, P. E., and Crouch, R. J. (2003) *Mol. Cell* 11, 807–815.

(7) Crow, Y. J., Leitch, A., Hayward, B. E., Garner, A., Parmar, R., Griffith, E., Ali, M., Semple, C., Aicardi, J., Babul-Hirji, R., Baumann, C., Baxter, P., Bertini, E., Chandler, K. E., Chitayat, D., Cau, D., Dery, C., Fazzi, E., Goizet, C., King, M. D., Klepper, J., Lacombe, D., Lanzi, G., Lyall, H., Martinez-Frias, M. L., Mathieu, M., McKeown, C., Monier, A., Oade, Y., Quarrell, O. W., Rittey, C. D., Rogers, R. C., Sanchis, A., Stephenson, J. B., Tacke, U., Till, M., Tolmie, J. L., Tomlin, P., Voit, T., Weschke, B., Woods, C. G., Lebon, P., Bonthron, D. T., Ponting, C. P., and Jackson, A. P. (2006) *Nat. Genet.* 38, 910–916.

(8) Nowotny, M., Gaidamakov, S. A., Crouch, R. J., and Yang, W. (2005) Cell 121, 1005–1016.

(9) Nowotny, M., Gaidamakov, S. A., Ghirlando, R., Cerritelli, S. M., Crouch, R. J., and Yang, W. (2007) *Mol. Cell* 28, 264–276.

(10) Nowotny, M., and Yang, W. (2006) EMBO J. 25, 1924-1933.

(11) Yazbeck, D. R., Min, K.-L., and Dahma, M. J. (2002) Nucleic Acids Res. 30, 3015–3025.

(12) Walder, R. T., and Walder, J. A. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5011-5015.

(13) Crooke, S. T. (1998) in Antisense Research and Application (Crooke, S. T., Ed.) Vol. 131, pp 1–50, Springer, Berlin.

(14) Bennett, C. F., and Swayze, E. E. (2010) Annu. Rev. Pharmacol. Toxicol. 50, 259–293.

(15) Lima, W. F., and Crooke, S. T. (1997) *Biochemistry* 36, 390–398. (16) Lima, W. F., Mohan, V., and Crooke, S. T. (1997) *J. Biol. Chem.* 272, 18191–18199.

(17) Lima, W. F., Nichols, J. G., Wu, H., Prakash, T. P., Migawa, M. T., Wyrzykiewicz, T. K., Bhat, B., and Crooke, S. T. (2004) *J. Biol. Chem.* 279, 36317–36326.

(18) Crooke, S. T. (1995) in *Therapeutic Applications of Oligonucleotides* (Crooke, S. T., Ed.) pp 63–79, R. G. Landes, Austin, TX.

(19) Damha, M. J., Wilds, C. J., Noronha, A., Brukner, I., Borkow, G., Arion, D., and Parniak, M. A. (1998) *J. Am. Chem. Soc.* 120, 12976– 12977.

(20) Cook, P. D. (1998) Annu. Rep. Med. Chem. 33, 313-325.

(21) Manoharan, M. (1999) Biochim. Biophys. Acta, Gene Struct. Expression 1489, 117–130.

Biochemistry

(22) Merki, E., Graham, M. J., Mullick, A. E., Miller, E. R., Crooke, R. M., Pitas, R. E., Witztum, J. L., and Tsimikas, S. (2008) *Circulation 118*, 743–753.

(23) Leucci, E., Vendramin, R., Spinazzi, M., Laurette, P., Fiers, M., Wouters, J., Radaelli, E., Eyckerman, S., Leonelli, C., Vanderheyden, K., Rogiers, A., Hermans, E., Baatsen, P., Aerts, S., Amant, F., Van Aelst, S., van den Oord, J., de Strooper, B., Davidson, I., Lafontaine, D. L., Gevaert, K., Vandesompele, J., Mestdagh, P., and Marine, J. C. (2016) *Nature 531*, 518–522.

(24) Manoharan, M., Akinc, A., Pandey, R. K., Qin, J., Hadwiger, P., John, M., Mills, K., Charisse, K., Maier, M. A., Nechev, L., Greene, E. M., Pallan, P. S., Rozners, E., Rajeev, K. G., and Egli, M. (2011) *Angew. Chem., Int. Ed.* 50, 2284–2288.

(25) Allerson, C. R., Sioufi, N., Jarres, R., Prakash, T. P., Naik, N., Berdeja, A., Wanders, L., Griffey, R. H., Swayze, E. E., and Bhat, B. (2005) J. Med. Chem. 48, 901–904.

(26) Pallan, P. S., Greene, E., Jicman, P., Pandey, R., Manoharan, M., Rozners, E., and Egli, M. (2011) *Nucleic Acids Res.* 39, 3482–3495.

(27) Lavery, R., and Sklenar, H. (1989) J. Biomol. Struct. Dyn. 6, 655-667.

Supporting Information

Limits of RNA 2'-OH Mimicry by Fluorine: Crystal Structure of *Bacillus halodurans* RNase H Bound to a 2' F-RNA:DNA Hybrid

Pradeep S. Pallan,[†] Thazha P. Prakash,[‡] Arnie R. de Leon[†] and Martin Egli^{*,†}

[†]Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA [‡]Department of Medicinal Chemistry, Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA *Contact: Tel: (615) 343-8070; Fax: (615) 322-7122; E-mail: martin.egli@vanderbilt.edu

Table of Contents:

BhRNase H expression and purification	S2
FRNA and DNA synthesis and purification	S2
Crystallization experiments	S3
X-ray data collection, structure determination and refinement	S3
Data deposition	S4
Figure S1: Quality of the final electron density	S5
Figure S2: Superimpositions of RNase H complexes with FRNA and RNA	S6
Figure S3: Illustrations of helical rise, twist, x-displacement and inclination	S7
Table S1: Crystal data, data collection and refinement parameters	S8
Table S2: FRNA 2'-F: <i>Bh</i> RNase H vs. RNA 2'-OH: <i>Bh</i> RNase H contacts	S10
Table S3: Curves output for FRNA:DNA duplex A (green)	S13
Table S4: Curves output for FRNA:DNA duplex B (blue)	S22
Table S5: Curves output for FRNA:DNA duplex C (orange)	S31
Table S6: Curves output for RNA:DNA duplex	S40
Acknowledgement and References	S49

BhRNase H expression and purification

The Asp132 \rightarrow Asn mutant of *Bh*RNase H (Met58 to Lys196) was expressed in *E. coli* and purified as previously described.^{1,2}

FRNA synthesis and purification

All reagents and solutions used for oligonucleotide synthesis were purchased from commercial sources. The standard phosphoramidites and solid supports were used for incorporation of dA, dG, dT, and dC residues. 2'-F A^{Bz} , 2'-F G_{ibu} , 2'-F U and 2'-F C^{Bz} phosphoramidites were used for the synthesis of 2'-F oligonucleotide. A 0.1 M solution of phosphoramidites in anhydrous acetonitrile (CH₃CN) was used for the synthesis. The modified oligonucleotides were synthesized on VIMAD UnyLinkerTM solid support. Dichloroacetic acid (6%) in toluene was used as detritylating reagent. 1M 4,5-Dicyanoimidazole in the presence of 0.1 M *N*-methylimidazole in CH₃CN was used as activator for coupling reaction. The synthesis of modified oligonucleotides was performed on an ÄKTAOligopilot synthesizer (GE Healthcare Bioscience) synthesizer on a 40 µmol scale using the procedures described below.

A solid support preloaded with the UnylinkerTM was loaded into a synthesis column after closing the column bottom outlet and acetonitrile (CH₃CN) was added to form slurry. The swelled support-bound UnylinkerTM was treated with a detritylating reagent containing 6% dichloroacetic acid in toluene to provide the free hydroxyl groups. During the coupling step, four equivalents of phosphoramidite solutions were delivered and the coupling was allowed to carry out for 6 min. All other steps in the protocol supplied by the manufacturer were used without modification. Phosphate diester linkages were incorporated via oxidation of phosphite triesters using a solution of tert-butyl hydroperoxide/CH₃CN/water (10:87:3) for a contact time of 12 min. After the desired sequence was assembled, the solid-support bound oligonucleotide was treated with 1:1 triethylamine: acetonitrile to remove cyanoethyl protecting groups from the phosphotriester linkages. The solid-support bound oligonucleotide was suspended in ammonia (28-30 wt%) and heated at 55°C for 2 h followed by keeping at ambient temperature over 24 h. The unbound oligonucleotide was then filtered and the support was rinsed and filtered with water:ethanol (1:1) followed by water. Filtrate and washing combined together and purified by HPCL on a strong anion exchange column (GE Healthcare Bioscience, Source 30Q, 30 µm, 2.54 x 8 cm, A = 100 mM ammonium acetate in 30% aqueous CH₃CN, B = 1.5 M NaBr in A, 0-40%

of B in 60 min, flow 14 mL min⁻¹). The fractions containing full length oligonucleotides were pooled together and diluted with water to get the acetonitrile concentration to 10% and desalted by HPLC on reverse phase column to yield the oligonucleotides in an isolated yield of 20-25% based on solid-support loading. The oligonucleotides were characterized by ion-pair-HPLC-MS analysis with Agilent 1100 MSD system.

Crystallization experiments

Protein and FRNA:DNA solutions were mixed in a 1:1 molar ratio in the presence of 5 mM MgCl₂ and crystallization experiments were performed by the sitting drop vapor diffusion technique using the Crystal Screen conditions (Hampton Research, Aliso Viejo, CA).³ Initial sitting-drop vapor diffusion crystallization experiments were carried out with a 96-well crystallization plate (CrystalQuick plate , Greiner Bio-One GmbH) and using an automated mosquito Crystal (TTP Labtech). Briefly, 200 nL complex solution was mixed with an equal amount of reservoir solution and equilibrated against 70 μ L reservoir wells. The crystallization hits were then used to set-up 2 μ L drops using the sitting drop vapor diffusion method in a CombiClover 4 chamber plate (Molecular Dimensions) at 18°C. Crystals appeared in droplets that were mixed and equilibrated with 0.4 M ammonium phosphate monobasic in about 1-3 days. Crystals were mounted in nylon loops, cryo-protected in reservoir solution containing 35% glycerol and frozen in liquid nitrogen.

X-ray data collection, structure determination and refinement

Diffraction data were collected at a wavelength of 0.91836 Å with a Dectris Eiger 9M detector on the 21-ID-D beam line of the Life Sciences Collaborative Access Team (LS-CAT) at the Advanced Photon Source, Argonne National Laboratory (Argonne, IL). Diffraction data were integrated and scaled with the program HKL2000.⁵ The structure was determined with the Molecular Replacement (MR) technique using the program MOLREP^{6,7} and the *Bh*RNase H structure with PDB ID 3D0P² as the search model. Initial refinement was carried out with the program REFMAC.⁸ Manual rebuilding of some protein residues was performed in COOT⁹ and water molecules were added gradually and isotropic/TLS refinement was continued with the program REFMAC. A summary of crystallographic parameters is provided in **Table S1**. All crystallographic figures were generated using the program Chimera.¹⁰ Examples of the quality of the final 2Fo-Fc omit electron density around selected base pairs are depicted in **Figure S2** and refinement statistics are summarized in **Table S1**.

Data deposition

Atomic coordinates and structure factor data for the *Bh*RNase H complex with FRNA:DNA have been deposited in the Protein Data Bank (http://www.rcsb.org, entry code 5SWM).

Figure S1. Quality of the final Fourier electron Fourier 2Fo-Fc sum electron density (1 σ threshold) in two different regions of the unit cell. Selected residues are labeled.

Figure S2. Overlays of complexes between *Bh*RNase H and FRNA:DNA and RNA:DNA. (A) Superimposition of the *Bh*RNase H molecules from the complexes with FNA:DNA (gray) and RNA:DNA (pink, PDB ID 1ZBI¹). N- and C-Termini are at the top, left, and at the bottom, center, respectively. Only the protein in complex with RNA:DNA features bound Mg²⁺ ions (magenta spheres). (B) Superimposition of FRNA(green):DNA(gray) and RNA(brown):DNA (pink) hybrid duplexes. 2'-Fluorine and 2'-hydroxyl oxygen atoms are highlighted with light green and red spheres, respectively.

Figure S3. Comparison of the helical parameters rise, twist, x-displacement and inclination for the three FRNA:DNA hybrids (green, duplex A; blue, duplex B; orange, duplex C) and the native RNA:DNA hybrid (PDB ID 1ZBI,¹ purple). All parameters were calculated with the program Curves¹¹ (see also **Tables S3** to **S6**).

Table S1. Crystal data, X-ray data collection and refinement parameters.

Complex	BhRNase-H : FRNA-DNA				
Data collection					
Wavelength [Å]	0.91836				
Space group	P1				
Resolution (outer shell) [Å]	50.00 - 1.50 (1.55 - 1.50)				
Unit cell constants <i>a</i> , <i>b</i> , <i>c</i> [Å]; α , β , γ [°]	37.47, 44.50, 62.17; 84.42, 89.90, 65.10				
Unique reflections	55,661 (4,620)				
Completeness [%]	95.7 (79.8)				
Ι/σ(Ι)	46.0 (10.6)				
R-merge	0.067 (0.130)				
Redundancy	6.1 (3.8)				
Refinement					
Phasing method	Molecular Replacement				
R-work	0.161 (0.153)				
R-free	0.185 (0.183)				
Number of amino acids	266				
Number of protein atoms	2,133				
Number of nucleic acid atoms	1,584 ^a				
Average B-factor, protein atoms [Å ²]	17.8				
Average B-factor, nucleic acid atoms [Å ²]	14.3				
Average B-factor, water / Na ⁺ /Cl ⁻ ions [Å ²]	30.8 / 21.5 / 26.4				
Wilson B-factor [Å ²]	13.5				

R.m.s.d. bond lengths [Å]	0.023
R.m.s.d. bond angles [°]	2.1
Ramachandran plot: No of favored / allowed residues / outliers	Chain A: 129 / 0 / 0 Chain B: 131 / 0 / 0
PDB ID code	5SWM

^aThe FRNA:DNA hybrid duplex has multiple occupancies and hence the number of listed atoms appears higher.

DNA <mark>– FRNA</mark> * base- pairs	FRNA : protein contacts G1.A → C12.A; 0.4 occupancy		DNA – FRNA* base- pairs FRNA : protein contact G1.B → C12.B; 0.4 occup		FRNA : protein contacts G1.B → C12.B; 0.4 occupancy		FRNA : prote G1.C → C12.C; (in contacts).2 occupancy
(Orientation A, green duplex)	Contact	Dist. [Å]	(Orientation B, blue duplex)	Contact	Dist. [Å]	(Orientation C, orange duplex)	Contact	Dist. [Å]
G1 – C12	OP1 : D71-OD1 OP1 : D71-OD2 OP1 : D192-OD1	3.31 2.59 3.44	G1 – C12			G1 – C12	F2' :G76-NH OP1 : S74-O OP1 : S74-NH	2.53 2.66 2.59
A2 – U11	F2' : E109-OE2	3.35	A2 – U11			A2 – U11	OP1 : D71-OD1 OP1 : D71-OD2	3.50 2.96
A3 – U10	OP1 : T183-OG1 F2 ' : Q134-NH F2 ' : N132-O	2.47 3.10 3.19	A3 – U10			A3 – U10	F2' : E109-OE2 OP1 : T183-OG1 OP1 : K180-NZ	3.00 2.65 2.50
5-Br-U4 – A9			5-Br-U4 – A9			5-Br-U4 – A9	F2' : Q134-NH F2' : N132-O	2.91 3.02
C5 – G8			C5 – <mark>G8</mark>			C5 – G8		
A6 – U7	OP1 : #G76-NH F2 ′ : #G76-NH	3.48 3.06	A6 – U7	OP1 : S74-NH F2' : G76-NH F2' : N77-NH O3' : G76-NH	3.18 2.97 3.40 2.72	A6 – U7		
G7 – C6			G7 – C6	F2' : S74-OG OP1 : D71-OD1 OP1 : D71-OD2 OP1 : N132-OD1	3.12 3.09 2.60 2.94	G7 – C6	OP1 : #G76-NH O3 ' : #G76-NH	2.67 2.54
G8 – C5			G8 – C5	OP1 : T183-OG1 OP1 : N132-O OP1 : K180-NZ	2.71 3.29 2.73	G8 – C5		
T9 – A4			T9 – A4	F2' :E109-OE2 F2' : Q134-NH F2' : N132-O	2.98 3.27 3.03	T9 – A4		
G10 – C3			G10 – <mark>C3</mark>			G10 – C3		
T11 – A2			T11 – A2			T11 – A2		
C12 – G1			C12 – G1			C12 – G1		

Table S2. FRNA 2'-F/phosphate backbone : BhRNase H vs. RNA 2'-OH : BhRNase H contacts.

FRNA residues are highlighted in bold green, and their respective atoms in bold. Only interactions with one of the two RNase H molecules contacting the duplexes are listed (residues A9.A to C12.A, A4.B to U7.B and U10.C to C12.C). For the analysis of contacts involving some of the FRNA residues in duplex C, a symmetry-related RNase H molecule (#) was used.

DNA - <mark>RNA</mark>	RNA : protein contacts G1 → C12					
base- pairs	Contact	Dist. [Å]				
G1 – <mark>C12</mark>						
A2 – <mark>U11</mark>	O2′ : G76-NH OP1 : S74-NH	3.06 2.86				
A3 – U10	02' : S74-OG	2.64				
T4 – <mark>A9</mark>	02 ′ : E109-OE2 OP1 : K180-NZ OP1 : T183-OG	2.75 2.44 2.72				
C5 – <mark>G8</mark>	02' : N132-O 02' : Q134-NH	2.75 3.13				
A6 – U7	02' : 134Q-OE1	2.69				
G7 – <mark>C6</mark>						
G8 – <mark>C5</mark>						
T9 – <mark>A4</mark>						
G10 – <mark>C3</mark>						
T11 – A2						
C12 – <mark>G1</mark>						

Table S2 continued: RNA 2'-OH/phosphate backbone: *Bh*RNase H contacts based on the complex with RNA:DNA (PDB ID 1ZBI).¹

Table S3. Curves output for FRNA:DNA duplex A (green molecule, 40% occupancy, Figure 3 – main paper).

***** ***** CURVES 5.3 R.L. 1998 ***** * 16 Aug 16 * ****** ***** FILE : 5SWM_A.pdb LIS : green dna axin : axout: daf : PDB : green 0.000 wid : 0.750 acc : 500 ior : 0 ibond: 0 splin: 3 break: -1 maxn : nleve: nbac : 3 7 DINU : F Т COMB : Т ends : supp : Т Т mini : line : F F FIT : Т test : F rest : zaxe : F GRV : Т old : Т axonl: F Least squares fitting of standard bases ... Str Rms (ang) Pos Base 1: 1) GA 1 0.074 1: 2) 2 0.065 AA 1: 3) 3 0.054 CA 1: 4) 4 0.069 AA 1: 5) 5 0.046 CA 1: 6) CA 6 0.056 1: 7) UA 7 0.061 1: 8) GΑ 8 0.092 1: 9) AA 9 0.076 1: 10) UA 10 0.051 1: 11) UA 11 0.057 1: 12) CA 12 0.044 2: 1) СВ 24 0.024 2: 2) ТΒ 23 0.054 2: 3) GΒ 22 0.029 2: 4) ΤВ 21 0.036 2: 5) GB 20 0.038 2: 6) 19 0.045 GB 2: 7) AB 18 0.042 2: 8) СВ 0.041 17 2: 9) ТΒ 16 0.048 2: 10) 0.058 AB 15 2: 11) AB 14 0.047 2: 12) GB 13 0.071 Strand= 2 Nucleo= 24 Atoms = 495 Units = 24 Input 1) Xdisp= 0.00 Ydisp= 0.00 Inclin= 0.00 Tip= 0.00 Combined strands have 12 levels ... Strand 1 has 12 bases (5'-3'): GACACCUGAUUC Strand 2 has 12 bases (3'-5'): CTGTGGACTAAG

FIRST SUM= 124.073 CPTS: 2.793 2.259 4.597 114.424 MINIMISATION: ACC = 0.100E-05 MAXN= 500 NVAR= 48

STED	1 SUM-	12/ 073	DEI –	0 000F±00
	2 CUM	124.075		
STEP	2 SUM=	104./19	DEL=	-0.194E+02
STEP	3 SUM=	76.151	DEL=	-0.286E+02
STEP	4 SUM=	50.192	DEL=	-0.260E+02
STEP	5 SUM=	60.660	DFI =	0.105E+02
STED		30 386		_0 213E+02
	0 30M	23.200	DLL-	-0.213L+02
STEP	7 SUM=	32.079	DEL=	-0./31E+01
STEP	8 SUM=	28.642	DEL=	-0.344E+01
STEP	9 SUM=	24.106	DEL=	-0.454E+01
STEP	10 SUM=	20.151	DFI =	-0.396F+01
STEP	11 SUM-	20 020	DEI –	0 778E+00
		10 240		0.7500-01
SIEP	12 5011=	18.349	DEL=	-0.238E+01
STEP	13 SOM=	15.419	DEL=	-0.293E+01
STEP	14 SUM=	12.128	DEL=	-0.329E+01
STEP	15 SUM=	34.885	DEL=	0.228E+02
STEP	16 SUM=	11.759	DEL=	-0.231E+02
STEP	17 SUM=	11.668	DFI =	-0.914F-01
STED	10 CIM-	11 /02		_0 175E±00
	10 5011-	10 505		
SIEP	19 5011=	10.585	DEL=	-0.90/E+00
STEP	20 SUM=	10.332	DEL=	-0.253E+00
STEP	21 SUM=	10.029	DEL=	-0.303E+00
STEP	22 SUM=	9.567	DEL=	-0.462E+00
STEP	23 SUM=	9.710	DFI =	0.143E+00
STEP	24 SUM-	0 367	DEL -	_0 3/3E+00
	25 SUM-	0 110		0 73/E_01
		9.440		0.1595.00
SIEP	26 SUM=	9.282	DEL=	-0.158E+00
STEP	27 SUM=	9.142	DEL=	-0.141E+00
STEP	28 SUM=	9.131	DEL=	-0.111E-01
STEP	29 SUM=	9.069	DEL=	-0.621E-01
STEP	30 SUM=	9.008	DEL=	-0.604E-01
STEP	31 SUM=	8,912	DFI =	-0.966F-01
STEP	32 SUM-	8 011	DEI –	_0 376F_03
	22 SUM-	0 062		0 100E 01
		0.003	DEL-	-0.4000-01
STEP	34 SUM=	8./93	DEL=	-0./04E-01
STEP	35 SUM=	8.691	DEL=	-0.102E+00
STEP	36 SUM=	8.896	DEL=	0.205E+00
STEP	37 SUM=	8.666	DEL=	-0.230E+00
STEP	38 SUM=	8.620	DFI =	-0.458E-01
STEP	39 SIM-	8 534	DFI =	-0 866F-01
STED	40 SUM-	8 603		0 150E+00
	40 5011-	0.095		0.10915.00
STEP	41 50M=	0.492	DEL=	-0.2010+00
STEP	42 SUM=	8.419	DEL=	-0./33E-01
STEP	43 SUM=	8.310	DEL=	-0.109E+00
STEP	44 SUM=	8.234	DEL=	-0.767E-01
STEP	45 SUM=	8.125	DEL=	-0.108E+00
STEP	46 SUM=	8.093	DEL=	-0.319E-01
STEP	47 SUM=	8 057	DFI =	-0 364F-01
STED	47 50H= 48 SHM-	8 007		0 103E_01
	40 501-	0.097		0.4031-01
SIEP	49 5011=	8.047	DEL=	-0.502E-01
STEP	50 SUM=	8.049	DEL=	0.196E-02
STEP	51 SUM=	8.045	DEL=	-0.381E-02
STEP	52 SUM=	8.045	DEL=	-0.207E-03
STEP	53 SUM=	8.045	DEL=	-0.331E-03
STEP	54 SUM=	8.045	DEL=	-0.211E-03
STEP	55 SUM=	8.045	DFI =	0.191F-04
STEP	56 SUM-	8 0/5	DFI -	-0.800F-0/
		0.045		0 173E 0F
SIEP	J/ JUM	0.045	DEL=	-U.4/JE-UJ

STEP	58 SUM=	8.045 DEL= -0.153E-04
STEP	59 SUM=	8.044 DEL= -0.653E-05
STEP	60 SUM=	8.044 DEL= -0.623E-05
STEP	61 SUM=	8.044 DEL= -0.675E-05
STEP	62 SUM=	8.044 DEL= -0.373E-05
STEP	63 SUM=	8.044 DEL= -0.155E-05
STEP	64 SUM=	8.044 DEL= -0.602E-07
STEP	65 SUM=	8.044 DEL= -0.114E-06
STEP	66 SUM=	8.044 DEL= -0.133E-07
STEP	67 SUM=	8.044 DEL= -0.130E-07
STEP	68 SUM=	8.044 DEL= -0.227E-09
STEP	69 SUM=	8.044 DEL= -0.718E-09
STEP	70 SUM=	8.044 DEL= -0.792E-10
STEP	71 SUM=	8.044 DEL= -0.699E-10
STEP	72 SUM=	8.044 DEL= -0.261E-11
STEP	73 SUM=	8.044 DEL= -0.565E-12
STEP	74 SUM=	8.044 DEL= -0.888E-14
STEP	75 SUM=	8.044 DEL= 0.000E+00

FINAL SUM= 8.044 CPTS: 2.099 2.995 0.960 1.991

GRA= 0.10E-07-0.69E-09 0.27E-08-0.22E-08-0.13E-07 0.35E-08-0.63E-08 0.66E-08 GRA= 0.12E-07-0.15E-07 0.57E-08 0.18E-08 0.94E-09 0.39E-08-0.47E-09-0.19E-08 GRA=-0.27E-08 0.83E-08 0.62E-08-0.65E-09-0.12E-07-0.15E-07 0.13E-08-0.11E-07 GRA=-0.64E-09-0.98E-09-0.99E-08 0.50E-08 0.98E-10-0.72E-09 0.58E-08-0.40E-08 GRA=-0.20E-08 0.11E-07-0.59E-08 0.90E-08-0.15E-07 0.18E-08 0.87E-08-0.15E-08 GRA= 0.13E-07 0.45E-08-0.72E-08 0.70E-08-0.20E-08-0.13E-07-0.40E-08-0.81E-08

|A| Global axis parameters |

1)	U:	-0 . 994	-0.061	-0.092	Ρ:	13.647	-2.032	18.825	D:	0.821
2)	U:	-0.998	0.034	-0.054	Ρ:	10.108	-2.022	18.898	D:	0.922
3)	U:	-0.997	0.076	-0.026	Ρ:	7.183	-1.541	19.023	D:	0.817
4)	U:	-0.998	-0.004	0.058	Ρ:	4.186	-1.599	18.910	D:	1.028
5)	U:	-0.996	-0.014	0.085	Ρ:	0.896	-1.986	19.420	D:	0.711
6)	U:	-0.995	0.026	0.100	Ρ:	-1.982	-2.058	20.013	D:	0.654
7)	U:	-0.996	-0.008	0.090	Ρ:	-5.379	-2.341	20.502	D:	0.623
8)	U:	-0.993	-0.031	0.110	Ρ:	-8.490	-2.352	20.760	D:	0.898
9)	U:	-0.999	0.017	0.042	Ρ:	-11.872	-2.568	20.841	D:	0.727
10)	U:	-1.000	-0.003	-0.022	Ρ:	-14.634	-2.625	21.108	D:	0.582
11)	U:	-0.996	-0.019	-0.082	Ρ:	-17.267	-2.512	20.779	D:	0.262
12)	U:	-0.993	-0.043	-0.107	Ρ:	-20.637	-2.649	20.271		

|B| Global Base-Axis Parameters |

1s [.]	t st	rand	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc	Тс
1)	GA	1	-3.41	-0.22	1.47	-9.75	1	0
2)	AA	2	-3.87	0.31	0.83	-14.26	2	21
3)	CA	3	-3.54	0.18	1.74	-12.49	3 -	-16
4)	AA	4	-4.08	0.44	-3.88	-13.34	2	29
5)	CA	5	-3.72	-0.19	-3.81	-9.69	3	-6
6)	CA	6	-4.13	0.10	-2.52	-10.33	3	-3
7)	UA	7	-3.67	-0.50	-2.74	-6.98	4 -	-25
8)	GA	8	-3.90	-0.09	0.20	-10.34	1	12
9)	AA	9	-3.61	-0.29	1.52	-12.50	2	22

10) UA 10 11) UA 11 12) CA 12	-4.41 -3.58 -4.43	-0.08 -0.44 -0.26	-3.49 7.20 -1.47	-14.52 -9.62 -10.49	4 -24 4 -18 3 0		
2nd strand	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc		
1)CB242)TB233)GB224)TB215)GB206)GB197)AB188)CB179)TB1610)AB1511)AB1412)GB13	-3.31 -3.85 -4.18 -3.72 -3.81 -3.95 -4.26 -3.51 -4.35 -3.69 -4.06	0.36 -0.14 0.09 -0.04 0.34 -0.10 0.25 0.03 0.28 -0.01 0.38 0.10	$14.47 \\ 13.63 \\ 5.16 \\ 9.46 \\ 7.41 \\ 1.31 \\ 9.32 \\ 5.72 \\ 14.19 \\ 6.17 \\ 6.84 \\ 2.16 \\$	-1.47 -2.18 2.42 -3.44 5.14 -0.64 4.57 2.91 -3.51 -2.18 0.56 1.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
C Global Base	pair-Axis	Paramete	rs				
Strand 1 with	strand 2 .						
Duplex	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc		
1) G 1-C 24 2) A 2-T 23 3) C 3-G 22 4) A 4-T 21 5) C 5-G 20 6) C 6-G 19 7) U 7-A 18 8) G 8-C 17 9) A 9-T 16 10) U 10-A 15 11) U 11-A 14 12) C 12-G 13	-3.36 -3.49 -4.13 -3.72 -3.97 -3.81 -4.08 -3.56 -4.38 -3.64 -4.24	-0.29 0.22 0.05 0.24 -0.26 0.10 -0.37 -0.06 -0.29 -0.04 -0.41 -0.18	7.97 7.23 3.45 2.79 1.80 -0.61 3.29 2.96 7.86 1.34 7.02 0.34	-4.14 -6.04 -7.45 -4.95 -7.42 -4.85 -5.77 -6.63 -4.49 -6.17 -5.09 -5.92	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Average:	-3.85	-0.11	3.79	-5.74			
D Global Base- 	-Base Paran 	eters					
Strand 1 with	strand 2 .	••					
Duplex	Shear (Sx)	Stretch (Sy)	Stagger (Sz)	Buckle (kappa)	Propel (omega)	Opening (sigma)	Bc Tc
1) G 1-C 24 2) A 2-T 23 3) C 3-G 22 4) A 4-T 21 5) C 5-G 20 6) C 6-G 19 7) U 7-A 18 8) G 8-C 17	-0.11 -0.02 -0.09 0.10 -0.00 -0.32 0.28 0.36	0.14 0.17 0.27 0.39 0.14 -0.00 -0.25 -0.05	-0.33 -0.44 0.21 -0.66 0.20 0.29 0.13 0.24	-13.00 -12.80 -3.42 -13.34 -11.22 -3.83 -12.06 -5.51	-11.22 -16.45 -10.08 -16.77 -4.55 -10.97 -2.41 -7.43	1.78 6.70 3.80 5.07 2.65 -0.51 -2.92 -1.30	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

S16

9) A 9-T 16 10) U 10-A 15 11) U 11-A 14 12) C 12-G 13	-0.10 -0.06 0.11 -0.37	-0.01 -0.09 -0.06 -0.16	-0.52 0.08 -0.38 0.31	-12.67 -9.66 0.36 -3.63	-16.01 -16.71 -9.07 -9.14	-0.77 -0.06 1.30 -3.28	2 22 4 -24 4 -18 3 0
Average:	-0.02	0.04	-0.07	-8.40	-10.90	1.04	
E Global Inte	r-Base Par	ameters					
1st strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12 2nd strand	-0.47 0.26 -0.65 0.55 -0.22 0.23 -0.18 0.27 -1.05 0.99 -0.69 Shift (Dx)	0.86 0.27 0.06 -1.04 0.01 -0.86 0.46 0.06 0.21 -0.53 0.08 Slide (Dy)	3.48 3.26 2.56 3.75 2.96 3.35 3.17 3.01 3.06 2.42 3.75 Rise (Dz)	-3.50 -1.86 -2.51 0.98 0.08 -0.11 3.84 0.25 -7.17 10.45 -8.75 Tilt (tau)	-9.69 1.08 5.00 5.06 1.54 1.30 -4.87 2.49 1.14 8.51 1.11 Roll (rho)	40.34 31.57 31.73 23.18 30.44 26.74 33.45 30.75 30.94 27.93 31.20 Twist (Omega)	2 -6 9 -1 -3 -9 2 7 -4 -2 Dc
2) C 24/T 23 3) T 23/G 22 4) G 22/T 21 5) T 21/G 20 6) G 20/G 19 7) G 19/A 18 8) A 18/C 17 9) C 17/T 16 10) T 16/A 15 11) A 15/A 14 12) A 14/G 13	-0.56 0.33 -0.84 0.65 0.10 -0.38 -0.25 0.73 -1.09 0.82 -0.21	-0.83 -0.17 0.07 0.79 -0.16 0.61 -0.26 -0.01 -0.29 0.57 -0.18	3.58 2.62 3.43 2.89 2.88 3.50 3.07 3.76 2.47 2.88 3.06	$\begin{array}{r} -3.69 \\ -11.24 \\ 7.41 \\ -1.14 \\ -7.31 \\ 8.12 \\ -2.70 \\ 7.41 \\ -10.19 \\ 0.44 \\ -4.77 \end{array}$	4.46 5.29 -11.70 7.16 -7.96 7.26 -0.16 -11.07 -1.84 -0.87 -1.19	35.42 34.46 30.46 25.61 33.60 29.15 31.83 30.21 30.23 26.56 35.78	-2 6 -9 6 1 3 9 -2 7 4 2
	har						

Strand 1 with strand 2 ...

Dup	le	ex		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2)	G	1/A	2	-0.52	0.85	3.53	-3.60	-7.08	37.88	2
3)	A	2/C	3	0.30	0.22	2.94	-6.55	-2.11	33.01	-6
4)	C	3/A	4	-0.75	-0.01	3.00	2.45	8.35	31.09	9
5)	A	4/C	5	0.60	-0.91	3.32	-0.08	-1.05	24.39	-6
6)	C	5/C	6	-0.06	0.09	2.92	-3.61	4.75	32.02	-1
7)	C	6/U	7	-0.08	-0.73	3.43	4.01	-2.98	27.94	-3
8)	U	7/G	8	-0.22	0.36	3.12	0.57	-2.36	32.64	-9
9) 10) 11)	G A	8/A 9/U	9 10	0.50 -1.07	0.03 0.25	3.38 2.77	3.83 -8.68	6.78 1.49	30.48 30.59	2 7
12)	U	10/0 11/C	12	-0.45	0.13	2.05 3.41	-6.76	4.09	27.24 33.49	-4 -2

Average:	-0.08	-0.03	3.13	-1.18	1.06	30.98	
G Local Inter-	Base Para	meters					
1st strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12	0.19 0.85 -0.14 1.18 0.32 0.75 0.42 0.97 -0.13 1.55 0.29	-1.59 -1.69 -2.07 -2.86 -2.22 -2.81 -1.78 -1.86 -1.98 -2.40 -1.88	3.25 3.14 3.02 3.49 2.99 3.00 3.03 3.21 3.39 2.50 4.01	4.69 5.34 5.00 5.61 5.30 3.90 8.69 6.16 0.35 15.82 -2.96	-8.50 1.83 4.32 3.41 -0.09 0.00 -5.42 3.01 0.69 9.15 2.69	40.42 31.18 31.49 22.57 30.06 26.32 32.56 30.04 31.79 25.30 32.12	2 -6 9 -6 -1 -3 -9 2 7 -4 -2
2nd strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 24/T 23 3) T 23/G 22 4) G 22/T 21 5) T 21/G 20 6) G 20/G 19 7) G 19/A 18 8) A 18/C 17 9) C 17/T 16 10) T 16/A 15 11) A 15/A 14 12) A 14/G 13	-0.59 0.34 -0.86 0.78 0.34 -0.27 0.07 0.69 -1.08 0.84 0.05	-0.58 -1.53 -2.01 -1.86 -2.19 -1.63 -1.36 -1.27 -2.02 -1.97	3.48 2.86 4.04 3.34 3.13 3.63 3.19 4.39 2.94 3.39 3.35	$\begin{array}{r} -4.57 \\ -10.76 \\ 6.88 \\ -0.76 \\ -5.81 \\ 8.84 \\ -0.54 \\ 7.14 \\ -11.36 \\ 0.04 \\ -3.95 \end{array}$	4.01 0.35 15.37 -3.21 10.20 -4.39 4.20 15.92 7.10 3.90 3.99	35.54 34.30 29.76 25.13 33.76 29.03 31.88 29.28 28.80 25.97 35.62	-2 6 -9 6 1 3 9 -2 7 4 2
H Local Inter-	Base pair	Paramete	rs 				
Strand 1 with	strand 2						
Duplex	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1/A 2	-0.18	-1.07	3.42	0.35	-2.04	38.64	2

Dupl	ex		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Do
2) G 3) A 4) C 5) A 6) C 7) C 8) U 9) G 10) A 11) U 12) U	1/A 2/C 3/A 4/C 5/C 6/U 7/G 8/A 9/U 10/U 11/C	2 3 4 5 6 7 8 9 10 11 12	-0.18 0.57 -0.44 0.97 0.33 0.25 0.24 0.87 -0.65 1.23 0.14	-1.07 -1.58 -1.87 -2.40 -2.04 -2.52 -1.71 -1.65 -1.59 -2.23 -1.92	3.42 3.01 3.56 3.45 3.06 3.35 3.11 3.79 3.22 2.97 3.67	0.35 -2.75 6.22 2.28 -0.15 6.40 4.02 6.66 -5.52 7.93 -3.47	-2.04 1.55 9.76 0.22 5.16 -2.21 -0.68 9.43 4.03 6.60 3.34	38.64 32.76 31.10 23.45 32.19 27.49 30.22 30.75 25.60 33.98	2 -6 9 -6 -1 -3 -9 2 7 -4 -2
Aver	age:		0.30	-1.87	3.33	2.00	3.20	30.79	

|I| Global Axis Curvature |

Duplex	Ax	Ay	Ainc	Atip	Adis	Angle	Path	Dc
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11	-0.02 -0.07 -0.11 0.19 0.19 -0.24 0.06 -0.02 -0.25 0.16	0.34 0.39 -0.20 -0.41 -0.28 -0.26 0.05 0.26 0.00 -0.18	-2.85 -2.77 3.11 0.91 -1.20 0.11 0.90 -1.07 -2.16 -0.24	-5.18 -0.69 5.85 1.42 2.19 -2.06 -1.50 4.64 3.17 3.61	0.34 0.40 0.23 0.45 0.34 0.35 0.07 0.26 0.25 0.24	5.91 2.86 6.62 1.68 2.49 2.06 1.75 4.76 3.83 3.61	3.54 2.97 3.00 3.35 2.94 3.44 3.12 3.39 2.78 2.66	2 -6 9 -1 -3 -9 2 7 -4
12) U 11/C 12	0.16	-0.10	-0.08	1.98	0.19	1.98	3.41	-2

Overall axis bend ... UU= 1.36 PP= 10.07

Dup	lex	0ffset	L.Dir	wrt	end-to-	end vector	
1) G	1	0.00	0.00				
2) A	2	0.11	16.83				
3) C	3	0.61	-53.51				
4) A	4	0.68	-64.84				
5) C	5	0.28 -	-127.30				
6) C	6	0.59	149.91				
7) U	7	0.87	99.63				
8) G	8	1.00	68.46				
9) A	9	0.94	28.52				
10) U	10	1.09	-2.24				
11) U	11	0.65	-19.18				
12) C	12	0.00	0.00				
Patl	n length=	34.59	9 End-t	o-end=	34.32	Shortening=	0.79 %

|J| Backbone Parameters | _____

1st	strand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
1)GA	A 1	-27.53	34.95	5.01	35.86	C3'-endo	106.2	103.1	102.4
2)AA	A 2	-34.16	39.82	358.60	40.60	C2'-exo	105.4	103.0	100.4
3)CA	3 کا	-27.58	39.43	14.51	41.61	C3'-endo	105.4	103.9	98.9
4)AA	4	-33.12	42.30	6.08	43.43	C3'-endo	105.5	101.9	99.9
5)CA	5 ٨	-25.86	45.98	24.81	51.34	C3'-endo	104.6	103.6	96.9
6)CA	6	-32.29	46.50	13.95	49.03	C3'-endo	107.2	99.5	98.1
7)UA	A 7	-30.04	36.53	358.01	36.47	C2'-exo	105.3	102.8	104.3
8)GA	8	-25.28	38.69	16.49	40.91	C3'-endo	105.6	102.2	102.4
9)AA	۹ ۱	-25.97	44.96	24.97	50.57	C3'-endo	104.7	104.0	96.1
10)UA	10	-31.30	44.50	11.91	46.29	C3'-endo	105.8	99.5	100.9
11)UA	11	-16.19	36.76	33.76	45.05	C3'-endo	107.6	103.1	100.0
12)CA	A 12	-22.49	35.40	18.94	38.06	C3'-endo	106.8	103.7	101.5
Tors	ions	Chi C1'-N	Gamma C5'-C4'	Delta C4'-C3'	Epsil C3'-O3'	Zeta 03'-P	Alpha P-05'	Beta 05'-C	5'
1)GA	1	-176.79	56.06	87.44	-142.47	-78.32	-66.28	172.60	5
2)AA	2	-158.00	53.19	85.25	-144.62	-74.13	-59.59	157.73	3

3)CA	3	-166.38	59.89	79.98	-157.66	-70.06	-65.96	178.32	1
4)AA	4	-153.81	49.57	78.26	-149.42	-52.27	-96.05	172.08	3
5)CA	5	-159.74	94.36	66.93	-166.73	-70.88	-68.84	173.97	7
6)CA	6	-160.34	56.53	65.96	-164.62	-50.62 -	162.33	163.03	3
7)UA	7	-177.26	158.66	84.54	-144.32	-70.79	-78.74	168.05	5
8)GA	8	-154.48	75.76	80.25	-136.56	-70.46	-71.71	157.54	1
9)AA	9	-156.00	76.43	68.60	-165.18	-77.13	-68.97	171.73	3
10)UA	10	-162.14	58.21	74.27	-141.19	-49.90 -	110.74	157.75	5
11)UA	11	-162.94	115.95	70.88	-151.08	-75.13	-62.17	169.24	1
12)CA	12	-161.21	58.16	85.36				•••••	
2nd s	trand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
		01 01	02 00		,p + ±				00
1)CB	24	33.94	-34.43	165.40	36.28	C2'-endo	106.0	102.1	103.3
2)TB	23	30.49	-25.58	148.64	30.64	C2'-endo	105.9	103.7	104.2
3)GB	22	0.89	21.74	56.66	40.96	C4'-exo	107.1	103.8	101.2
4)TB	21	40.73	-28.52	135.66	41.16	C1'-exo	104.6	102.0	103.6
5)GB	20	31.12	-33.65	171.14	34.70	C2'-endo	106.2	102.8	103.5
6)GB	19	-33.23	37.61	357.36	38.87	C2'-exo	107.4	101.7	101.2
7)AB	18	41.19	-26.85	130.68	42.54	C1'-exo	104.1	101.4	103.9
8)CB	17	35.11	-31.47	154.48	35.67	C2'-endo	105.9	102.3	103.6
9)TB	16	17.50	1.50	87.24	33.07	01'-endo	106.4	106.2	103.1
10)AB	15	41.05	-32.67	144.49	41.15	C2'-endo	104.9	101.0	104.0
11)AB	14	33.41	-26.92	145.18	33.49	C2'-endo	106.2	103.0	104.8
12)GB	13	-25.38	22.78	336.33	25.67	C2'-exo	108.3	104.5	103.9
Torsi	ons	Chi	Gamma	Delta	Epsil	Zeta	Alpha	Beta	
		C1'-N	C5'-C4'	C4'-C3	C3'-03'	' 03'-P	P-05'	05'-C	5'
1)CB	24	-99.33	38.13	141.42					
2)TB	23	-120.71	42.76	129.60	-176.42	-81.15	-66 . 32 ·	-167.46	5
3)GB	22	-162.82	-170.12	79 . 68	-173.07	-64.30	-54.51 ·	-173.83	3
4)TB	21	-117.01	48.81	130.94	-163.70	-97.29	122 . 93 ·	-165.09	9
5)GB	20	-129.76	46.55	144.04	-176.90	-89.76	-70.37	-169.56	5
6)GB	19	-175.11	-142.52	92.44	-141.82	-82.95	-45.45	176.86	5
7)AB	18	-123.73	55.29	127.50	-166.55	-119.43	88.40	-154.42	1
8)CB	17	-121.74	64.64	135.35	-175.56	-84.29	-91.47	-172.78	3
9) I B	16	-138./0	1/9.14	99.91	1/4.03	-//.96	-/9.30	-164.49	1
10)AB	15	-110.71	45.10	132.69	-1/6.53	-83.45	13/.09	1/7.17	/
11)AB	14	-131.50	52.29	126.79	178.99	-93.16	-59.61	-168.52	L
12)GB	13	-173.71	-150.90	111.61	-134.72	-71.56	-67.76	178.59	J

_____ |K| Groove parameters | _____

Atom defining backbone: P 12 levels, 3 sub-levels

L	eve	els	Mir	nor groov	'e		Maj	or groov	e	
	i	n	Width	Depth	Angle		Width	Depth	Angle	Diam
G	1	0				G				
	1	1								
	1	2								
	1	3								
А	2	0				Α				
	2	1								
	2	2	7.50	3.26	32					20.42
С	3	0	7.89	3.59	23	С				20.97

	3	1	8.62	2.98	24					21.32
	3	2	9.12	2.11	40					21.32
	3	3	8.80	2.06	44					21.07
А	4	0	8.35	2.05	47	Α				20.77
	4	1	7.96	2.36	42		14.66	3.63	74	20.12
	4	2	7.66	2.70	37		15.06*	5.33	66	20.21
	4	3	7.54	2.92	35		16.10*	3.08	72	20.69
С	5	0	7.62	3.13	30	С	11.25	8.94	27	21.08
	5	1	7.97	2.99	27		11.96	8.99	31	21.46
	5	2	8.25	2.66	25		12.87	8.33	41	21.59
С	6	0	8.35	2.12	25	С	13.91	7.69	47	21.54
	6	1	8.53	1.86	26		14.80	7.17	50	21.50
	6	2	8.73	1.77	27		15.43	10.16	14	21.51
	6	3	8.79	1.74	32		15.00	2.35	75	21.48
U	7	0	8.80	2.04	35	U	14.60	1.39	79	21.34
	7	1	8.77	2.37	38		14.47	10.22	16	20.85
	7	2	8.73	2.58	39		13.98	10.25	19	19.88
	7	3	8.65	2.66	36		13.38	10.21	24	19.49
G	8	0	8.53	2.58	37	G	12.37	9.60	33	19.49
	8	1	8.38	2.64	37		11.64	9.27	35	19.80
	8	2	8.23	2.79	34					20.43
	8	3	8.13	3.10	31					21.27
А	9	0	8.35	3.24	30	Α				21.87
	9	1	9.10	2.38	32					21.91
	9	2	9.09	1.64	47					21.22
U	10	0	8.68	1.66	45	U				20.38
	10	1	8.18	2.29	37					19.94
	10	2								20.19
U	11	0				U				
	11	1								
	11	2								
	11	3								
С	12	0				С				

Table S4. Curves output for RNA:DNA duplex B (blue molecule, 40% occupancy, Figure 3 – main paper).

****** ***** CURVES 5.3 R.L. 1998 ***** * 16 Aug 16 * ***** LIS : blue FILE : 5SWM B.pdb dna : axin : daf : axout: PDB : blue 0.000 wid : 0.750 acc : maxn : 500 ior : 0 ibond: splin: break: -1 0 3 nleve: 3 nbac : 7 supp : COMB : ends : F Т Т DINU : Т mini : Т rest : F line : F zaxe : F FIT Т test : F 1 Т GRV Т old axonl: : : F Least squares fitting of standard bases ... Str Pos Base Rms (ang) 1: 1) GC 1 0.071 1: 2) AC 2 0.064 СС 3 0.034 1 : 3) 1: 4) AC 4 0.061 5 1 : 5) CC 0.023 1: 6) СС 6 0.042 1: UC 7) 7 0.068 1: 8) GC 8 0.071 1: 9 9) AC 0.070 1: UC 10 0.054 10) 1: 11) UC 11 0.051 1: 12) СС 12 0.052 2: CD 12 1) 0.021 2: 2) TD 11 0.048 2: 0.034 3) GD 10 2: 4) TD 9 0.041 2: 5) GD 8 0.070 2: 6) GD 7 0.043 2: 7) AD 6 0.026 2: 8) CD 5 0.023 2: 9) UD 4 0.065 2: 10) AD 3 0.042 2: 2 11) AD 0.051 2: 1 0.055 12) GD Strand= 2 Nucleo= 24 Atoms = 495 Units = 24 Input 1) Xdisp= 0.00 Ydisp= 0.00 Inclin= 0.00 Tip= 0.00 Combined strands have 12 levels ... 1 has 12 bases (5'-3'): GACACCUGAUUC Strand Strand 2 has 12 bases (3'-5'): CTGTGGACUAAG FIRST SUM= 119.763 CPTS: 4.068 1.499 5.083 109.112

CTED	1 CUM_	110 762 DEL-	- 0 0005100
SILP	1 501-	119.705 DEL-	- 0.0000+00
STEP	2 SUM=	99.466 DEL=	= -0.203E+02
STEP	3 SUM=	71.568 DEL=	= -0.279E+02
STEP	4 SUM=	47.789 DEL=	= -0.238E+02
STED	5 SUM-	5/ 051 DEL-	- 0.626E±01
	5 5011-	34.031 DEL-	- 0.020L+01
STEP	6 SUM=	3/.2/5 DEL=	= -0.108E+02
STEP	7 SUM=	31.404 DEL=	= -0.587E+01
STEP	8 SUM=	28.272 DEL=	= -0.313E+01
STEP	9 SUM=	24.364 DEL=	= -0.391F+01
STED	10 SUM-	20 002 DEL-	0 3/6F±01
	10 JUN-	20.902 DLL-	
SIEP		27.509 DEL-	= 0.001E+01
STEP	12 SUM=	20.016 DEL=	= -0./49E+01
STEP	13 SUM=	18.432 DEL=	= -0.158E+01
STEP	14 SUM=	15.838 DEL=	= -0.259E+01
STEP	15 SUM=	13.952 DEL=	= -0.189F+01
STED	16 SUM-	18 862 DEL-	- 0 /01E±01
	10 JUN-	10.002 DEL-	
SIEP	17 5011=	13.342 DEL=	= -0.532E+01
STEP	18 SUM=	13./15 DEL=	= 0.1/3E+00
STEP	19 SUM=	13.373 DEL=	= -0.343E+00
STEP	20 SUM=	13.084 DEL=	= -0.289E+00
STEP	21 SUM=	12.798 DFL=	= -0.287F+00
STEP	22 SUM-	12 211 DEL-	0 586E+00
	22 SUM-	15 740 DEL-	
	23 SUM-	13.740 DEL-	
SIEP	24 5011=	12.138 DEL=	= -0.300E+01
SIEP	25 SUM=	12.045 DEL=	= -0.936E-01
STEP	26 SUM=	11.886 DEL=	= -0.159E+00
STEP	27 SUM=	12.240 DEL=	= 0.354E+00
STEP	28 SUM=	11.849 DEL=	= -0.391E+00
STEP	29 SUM=	11.789 DEL=	= -0.594E-01
STEP	30 SUM=	11.701 DFL=	= -0.881F-01
STEP	31 SUM=	11 654 DEL	= _0 470F_01
STED	32 SIM-	11 576 DEL-	0 781F_01
	32 SUM-	11 560 DEL-	
STEP		11.JUZ DEL-	0.142E-01
SIEP	34 SUM=	11.533 DEL=	= -0.288E-01
STEP	35 SUM=	11.504 DEL=	= -0.285E-01
STEP	36 SUM=	11.451 DEL=	= -0 . 530E-01
STEP	37 SUM=	11.302 DEL=	= -0.150E+00
STEP	38 SUM=	13.202 DEL=	= 0.190E+01
STEP	39 SUM=	11.284 DFL=	= -0.192F+01
STEP	10 SUM-	11 26/ DEL-	0 107F_01
	40 50H= 41 CHM-	11 204 DEL-	
	41 JUN-	11.229 DLL-	
SIEP	42 SUM=	11.103 DEL=	= -0.034E-01
SIEP	43 SUM=	11.0/4 DEL=	= -0.893E-01
STEP	44 SUM=	10.993 DEL=	= -0.814E-01
STEP	45 SUM=	11.017 DEL=	= 0.245E-01
STEP	46 SUM=	10.964 DEL=	= -0.536E-01
STEP	47 SUM=	10.970 DEL=	= 0.621E-02
STEP	48 SUM-	10 953 DEL-	0 164F_01
STED	40 SUM-	10 05/ DEL-	- 0 7/7E_03
		10.954 DEL-	- 0.747L-03
SIEP	50 50M=	10.952 DEL=	= -0.205E-02
SIEP	51 SUM=	10.952 DEL=	= 0.1/2E-04
STEP	52 SUM=	10.951 DEL=	= -0.518E-03
STEP	53 SUM=	10.951 DEL=	= -0.380E-04
STEP	54 SUM=	10.951 DEL=	= -0.222E-03
STEP	55 SUM=	10.951 DEL=	= -0.104E-03
STEP	56 SUM=	10.951 DFI =	= -0.112E-03
STEP	57 SUM=	10.951 DFL=	= 0.555F-05
STEP	58 SUM-	10.951 DEL-	= -0.232F-0/
J . L I	JJ JUI-		012020 07

ΜΤΝΙΤΜΤΩΛΤΤΟΝΙ	ACC -	0 100E_05 MAXN-	500 NV/AR-	18
MINIMISATION:	AUU =	U. IUUE-US MAAN=	500 NVAR=	40

STEP	59 SUM=	10.950 DEL= -0.164E-04
STEP	60 SUM=	10.950 DEL= -0.200E-04
STEP	61 SUM=	10.950 DEL= -0.188E-04
STEP	62 SUM=	10.950 DEL= -0.348E-06
STEP	63 SUM=	10.950 DEL= -0.236E-05
STEP	64 SUM=	10.950 DEL= -0.733E-06
STEP	65 SUM=	10.950 DEL= -0.138E-06
STEP	66 SUM=	10.950 DEL= -0.430E-07
STEP	67 SUM=	10.950 DEL= 0.150E-08
STEP	68 SUM=	10.950 DEL= -0.773E-08
STEP	69 SUM=	10.950 DEL= -0.596E-09
STEP	70 SUM=	10.950 DEL= -0.283E-09
STEP	71 SUM=	10.950 DEL= -0.951E-11
STEP	72 SUM=	10.950 DEL= -0.279E-11
STEP	73 SUM=	10.950 DEL= -0.757E-12
STEP	74 SUM=	10.950 DEL= -0.195E-12
STEP	75 SUM=	10.950 DEL= -0.249E-13
STEP	76 SUM=	10.950 DEL= 0.000E+00

FINAL SUM= 10.950 CPTS: 2.511 4.747 1.068 2.625

GRA= 0.10E-07-0.36E-07 0.30E-08-0.34E-08 0.11E-07-0.15E-07-0.42E-08 0.68E-08 GRA=-0.23E-08 0.19E-07 0.43E-08-0.45E-09 0.18E-07-0.36E-08 0.78E-08 0.46E-08 GRA= 0.21E-08 0.13E-07-0.41E-09-0.67E-08-0.13E-10-0.18E-07 0.98E-09-0.11E-08 GRA=-0.97E-08 0.18E-07-0.47E-08-0.43E-08-0.11E-08-0.85E-08 0.41E-08-0.15E-08 GRA= 0.10E-07-0.80E-08-0.61E-08 0.49E-08 0.22E-07-0.32E-08-0.38E-08-0.52E-09 GRA=-0.12E-07-0.75E-08 0.12E-07 0.12E-07 0.16E-08 0.32E-07-0.73E-08-0.10E-07

1) U: -0.989 0.025 0.149 P: 32.208 -2.588 21.131 D: 0.944 28.998 -2.692 21.198 D: -0.995 -0.001 2) U: 0.104 P: 1.022 21.303 -0.998 -0.007 3) U: 0.064 P: 26.092 -2.924 D: 1.265 -0.032 P: -0.079 P: 0.025 4) U: -0.999 22.768 -2.496 21.584 D: 0.926 -0.996 0.045 -2.238 5) U: 19.603 21.068 D: 0.961 -0.145 P: -0.147 P: -0.147 P: -0.145 P: -0.072 P: 0.025 P: 0.089 P: 6) U: -0.985 0.088 16.629 -2.283 20.455 D: 1.357 7) U: -0.987 0.063 13.130 -1.441 19.740 D: 0.940 8) U: -0.989 0.038 10.054 -1.241 19.339 D: 1,289 9) U: -0.997 -0.028 6.889 -1.264 19.114 D: 1.203 10) U: -1.0000.009 4.132 -1.467 18.686 D: 0.636 11) U: -0.996 0.004 1.414 -1.550 18.980 D: 0.406 0.149 P: -1.948 -1.403 19.573 12) U: -0.989 0.012

|B| Global Base-Axis Parameters |

|A| Global axis parameters |

Bc Tc Xdisp 1st strand Ydisp Inclin Tip (dx) (dy) (eta) (theta) 1) GC -2.92 -0.27 -1.97 -8.60 1 1 0 2) AC -3.79 2 21 2 0.44 0.40 -10.06 3) CC -3.12 1.45 3 0.11 -12.45 3 -16 4) AC -3.66 -4.71 -11.72 2 29 4 0.23 5) CC 5 -3.39 -0.39 -5.84 -9.33 3 -6 6) CC 6 -3.24 0.31 -2.38 -12.19 3 -3 7) UC -3.50 -8.04 -2.73 4 -25 7 -0.77 8) GC -3.46 0.20 -2.81 -8.47 1 12 8 9) AC -3.22 -0.44 -1.37 9 -11.43 2 22

10) UC 11) UC 12) CC	10 11 12	-3.84 -3.33 -3.71	-0.04 -0.51 -0.15	-3.90 2.75 -5.06	-10.60 -9.05 -9.10	4 -24 4 -18 3 0		
2nd stra	and	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc		
1) CD 2) TD 3) GD 4) TD 5) GD 6) GD 7) AD 8) CD 9) UD 10) AD 11) AD 12) GD	12 11 10 9 8 7 6 5 4 3 2 1	-2.83 -3.24 -3.06 -3.69 -3.25 -3.33 -3.46 -3.85 -3.23 -4.05 -3.37 -3.79	0.35 -0.20 0.16 -0.08 0.57 -0.28 0.32 -0.07 0.38 0.05 0.66 0.12	12.86 8.56 -1.13 4.63 0.93 2.59 5.30 4.36 5.12 -0.65 0.69 3.95	$\begin{array}{c} -1.58\\ 0.13\\ -0.98\\ -2.00\\ 1.66\\ -0.58\\ 2.34\\ 4.34\\ -6.91\\ -0.74\\ -1.40\\ 0.73\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
C Globa	l Base p	pair-Axis	Paramete	rs				
Strand 1	1 with s	strand 2 .						
Duplex		Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc		
1) G 1- 2) A 2- 3) C 3- 4) A 4- 5) C 5- 6) C 6- 7) U 7- 8) G 8- 9) A 9- 10) U 10- 11) U 11- 12) C 12-	-C 12 -T 11 -G 10 -T 9 -G 8 -G 7 -A 6 -C 5 -U 4 -A 3 -A 2 -G 1	-2.88 -3.52 -3.09 -3.67 -3.32 -3.28 -3.48 -3.66 -3.22 -3.95 -3.35 -3.75	$\begin{array}{c} -0.31\\ 0.32\\ -0.02\\ 0.16\\ -0.48\\ 0.29\\ -0.55\\ 0.14\\ -0.41\\ -0.04\\ -0.59\\ -0.13\end{array}$	5.45 4.48 0.16 -0.04 -2.46 0.10 -1.37 0.78 1.87 -2.27 1.72 -0.56	-3.51 -5.10 -5.73 -4.86 -5.49 -5.81 -2.53 -6.40 -2.26 -4.93 -3.83 -4.91	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Average	:	-3.43	-0.14	0.65	-4.61			
D Globa	l Base-E	Base Param	eters					
Strand 1	1 with s	strand 2 .						
Duplex		Shear (Sx)	Stretch (Sy)	Stagger (Sz)	Buckle (kappa)	Propel (omega)	Opening (sigma)	Bc Tc
1) G 1- 2) A 2- 3) C 3- 4) A 4- 5) C 5- 6) C 6- 7) U 7- 8) G 8-	-C 12 -T 11 -G 10 -T 9 -G 8 -G 7 -A 6 -C 5	-0.09 -0.54 -0.07 0.03 -0.14 0.09 -0.03 0.39	0.08 0.24 0.27 0.14 0.19 0.03 -0.44 0.13	-0.38 -0.37 0.13 -0.31 0.26 -0.36 0.19 0.19	-14.83 -8.16 2.57 -9.34 -6.78 -4.98 -13.34 -7.16	-10.18 -9.94 -13.43 -13.72 -7.67 -12.77 -0.38 -4.13	1.97 2.95 3.74 4.33 4.61 2.89 -5.25 -1.44	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

S25

9) A 9-U 4 10) U 10-A 3 11) U 11-A 2 12) C 12-G 1	0.01 0.21 0.04 0.08	-0.06 0.01 0.15 -0.03	-0.01 0.56 -0.19 0.03	-6.48 -3.25 2.06 -9.01	-18.34 -11.34 -10.46 -8.37	-0.30 2.30 4.15 -1.14	2 22 4 -24 4 -18 3 0
Average:	-0.00	0.06	-0.02	-6.56	-10.06	1.57	
E Global Inter	-Base Para	ameters					
1st strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12	-0.96 0.60 -0.64 0.57 0.52 -0.75 0.01 0.36 -0.93 0.63 -0.16	$1.07 \\ -0.07 \\ -0.33 \\ -0.82 \\ 0.68 \\ -1.42 \\ 1.03 \\ -0.58 \\ 0.12 \\ -0.60 \\ 0.32$	3.20 3.15 3.12 3.48 2.71 3.89 3.11 3.07 3.06 2.35 3.52	$\begin{array}{c} -0.37 \\ -0.87 \\ -5.92 \\ 0.52 \\ 7.92 \\ -6.01 \\ 5.48 \\ 1.07 \\ -6.15 \\ 7.73 \\ -5.79 \end{array}$	-2.59 -1.07 6.57 4.79 -1.80 10.89 -4.31 2.70 5.54 5.10 2.77	38.59 33.74 28.99 25.42 38.65 16.52 39.23 26.86 32.57 26.95 34.61	2 -6 9 -1 -3 -9 2 7 -4 -2
2nd strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 12/T 11 3) T 11/G 10 4) G 10/T 9 5) T 9/G 8 6) G 8/G 7 7) G 7/A 6 8) A 6/C 5 9) C 5/U 4 10) U 4/A 3 11) A 3/A 2 12) A 2/G 1	-0.51 0.12 -0.74 0.74 0.29 -0.63 -0.42 0.74 -1.13 0.80 -0.19	-0.91 0.10 0.21 0.87 -0.84 0.95 -0.46 0.39 -0.06 0.74 -0.50	3.18 2.66 3.55 2.91 3.33 3.35 3.11 3.27 2.49 3.11 3.30	-7.04 -11.60 6.00 -2.05 6.12 2.35 -0.70 0.39 -9.39 2.42 5.28	2.84-2.42-6.861.26-3.301.50 $0.56-16.911.46-4.22-0.68$	37.61 32.96 28.40 25.14 40.38 24.66 35.42 25.72 29.97 25.10 39.90	-2 6 -9 6 1 3 9 -2 7 4 2

|F| Global Inter-Base pair Parameters | -----

Strand 1 with strand 2 ...

Duple	ex		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 3) A 4) C 5) A 6) C 7) C 8) U 9) G 10) A	1/A 2/C 3/A 4/C 5/C 6/U 7/G 8/A 9/U	2 3 4 5 6 7 8 9	-0.73 0.36 -0.69 0.66 0.41 -0.69 -0.21 0.55 -1.03	0.99 -0.09 -0.27 -0.84 0.76 -1.18 0.75 -0.49 0.09	3.19 2.91 3.34 3.20 3.02 3.62 3.11 3.17 2.77	-3.71 -6.23 0.04 -0.76 7.02 -1.83 2.39 0.73 -7.77	-2.71 0.68 6.72 1.76 0.75 4.70 -2.44 9.80 2.04	38.10 33.35 28.70 25.28 39.51 20.59 37.32 26.29 31.27	2 -6 9 -1 -3 -9 2 7
11) U	10/U	11	0.71	-0.67	2.73	5.07	4.66	26.03	-4
12) U	11/C	12	-0.18	0.41	3.41	-0.25	1.73	37.26	-2

Average	:	-0.08	-0.05	3.13	-0.48	2.52	31.24	
G Local	Inter-	Base Para	meters					
1st str	and	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1 3) A 2 4) C 3 5) A 4 6) C 5 7) C 6 8) U 7 9) G 8 10) A 9 11) U 10 12) U 11	/A 2 /C 3 /A 4 /C 5 /C 6 /U 7 /G 8 /A 9 /U 10 /U 11 /C 12	-0.49 1.01 0.02 1.19 0.98 -0.16 0.43 0.95 -0.12 1.12 0.67	-1.22 -2.00 -2.13 -2.70 -1.72 -2.78 -1.59 -2.21 -2.01 -2.30 -1.86	3.24 3.13 3.47 3.22 2.55 3.78 3.08 3.21 3.36 2.40 3.58	5.62 5.63 0.65 5.26 14.75 -3.80 8.90 5.60 0.28 12.13 0.05	-2.97 -0.37 5.71 2.33 -4.46 9.27 -7.59 1.80 4.06 4.73 2.06	38.18 33.26 29.68 25.00 36.70 17.29 38.67 26.46 33.31 25.40 35.10	2 -6 9 -6 -1 -3 -9 2 7 -4 -2
2nd str	and	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 12 3) T 11 4) G 10 5) T 9 6) G 8 7) G 7 8) A 6 9) C 5 10) U 4 11) A 3 12) A 2	/T 11 /G 10 /T 9 /G 8 /G 7 /A 6 /C 5 /U 4 /A 3 /A 2 /G 1 	-0.44 0.15 -0.83 0.86 0.41 -0.58 -0.13 0.70 -1.15 0.86 0.05 	-0.49 -1.71 -1.76 -2.18 -1.40 -2.12 -1.50 -1.74 -1.70 -2.34 -1.82 Parameter	3.28 2.84 3.92 3.17 3.42 3.60 3.35 3.78 2.84 3.35 3.54	-7.26 -11.50 4.90 -2.13 6.37 2.67 1.41 -0.15 -11.17 1.82 4.82	4.07 4.40 7.69 0.10 4.52 0.25 2.45 18.72 -0.11 4.24 2.41	37.16 32.90 28.40 24.97 40.32 24.47 35.14 25.47 29.15 25.14 39.81	-2 6 -9 6 1 3 9 -2 7 4 2
Strand	 1 with	strand 2	 					
Duplex		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1 3) A 2 4) C 3 5) A 4 6) C 5 7) C 6	/A 2 /C 3 /A 4 /C 5 /C 6 /U 7	-0.46 0.57 -0.37 1.01 0.73 -0.39	-0.85 -1.83 -1.93 -2.42 -1.56 -2.43	3.27 3.01 3.73 3.21 3.01 3.71	-0.72 -2.86 2.83 1.52 10.74 -0.54	0.75 2.30 6.61 1.38 0.12 4.80	37.91 33.20 29.26 24.95 38.79 20.46	2 -6 9 -6 -1 -3

-1.56

-1.99

-1.84

-2.31

-1.83

-1.87

0.15

0.83

-0.67

1.03

0.35

0.25

8) U 7/G 8

9) G 8/A 9

10) A 9/U 10

11) U 10/U 11

12) U 11/C 12

Average:

3.01	-2.86	2.30
3.73	2.83	6.61
3.21	1.52	1.38
3.01	10.74	0.12

5.02

2.73

-5.51

6.99

2.45

2.06

-2.68

10.25

2.07

4.63

2.19

2.95

3.20

3.49

3.14

2.88

3.57

3.29

S27

37.20 -9

25.36 -4

37.56 -2

2

7

26.49

31.34

31.14

|I| Global Axis Curvature |

Du	ן מי	lex		Ax	Ay	Ainc	Atip	Adis	Angle	Path	Dc
2)	G	1/A	2	-0.10	0.36	-2.74	-1.13	0.37	2.96	3.21	2
3)	A	2/C	3	-0.06	0.25	-1.92	1.32	0.26	2.33	2.92	-6
4)	C	3/A	4	-0.11	-0.45	0.24	5.84	0.46	5.85	3.36	9
5)	A	4/C	5	0.30	-0.21	1.65	2.40	0.37	2.91	3.22	-6
6)	C	5/C	6	0.37	-0.01	4.46	1.07	0.37	4.59	3.04	-1
7)	C	6/U	7	-0.49	-0.35	-0.35	1.43	0.60	1.47	3.67	-3
8)	U	7/G	8	-0.03	0.06	0.24	1.43	0.07	1.45	3.11	-9
9)	G	8/A	9	0.11	0.06	-0.37	5.65	0.13	5.67	3.17	2
10)	A	9/U	10	-0.30	-0.27	-3.62	4.71	0.40	5.94	2.80	7
11)	U	10/U	11	0.11	-0.13	1.08	3.56	0.17	3.72	2.73	-4
12)	U	11/C	12	0.22	-0.04	2.02	2.81	0.22	3.46	3.42	-2

Overall axis bend ... UU= 0.72 PP= 9.81

Duplex	Offset	L.Dir	wrt end-to-end vector
1) G 1 2) A 2 3) C 3 4) A 4 5) C 5 6) C 6 7) U 7 8) G 8 9) A 9 10) U 10 11) U 11	0.00 0.30 0.71 0.91 0.52 0.24 0.71 0.97 0.97 1.17 0.75	0.00 17.08 -22.01 -15.48 -35.62 146.05 55.94 23.06 5.08 -7.46 -25.00	wrt end-to-end vector
12) C 12	0.00	0.00	

Path length= 34.65 End-to-end= 34.21 Shortening= 1.26 %

|J| Backbone Parameters |

1st	strand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
1)G(2 1	-24.26	33.42	11.06	34.53	C3'-endo	105.5	105.6	100.7
2)A(2	-35.31	40.73	357.81	41.36	C2'-exo	104.2	104.4	99.2
3)C(3	-29.95	37.70	3.73	38.28	C3'-endo	105.5	103.6	101.5
4)A(2 4	-27.05	38.84	12.72	40.58	C3'-endo	107.5	100.7	102.7
5)CC	5	-28.96	35.14	359.87	35.53	C2'-exo	105.8	103.6	103.4
6)CC	6	-35.35	46.47	9.47	48.58	C3'-endo	106.3	100.9	95.8
7)U(27	-23.70	27.15	355.13	27.66	C2'-exo	107.0	103.3	105.1
8)G(8	-30.67	40.16	7.84	41.55	C3'-endo	106.2	101.9	100.3
9)A(9	-23.23	39.96	23.62	44.23	C3'-endo	104.8	104.4	98.9
10)U(10	-26.58	41.58	18.03	44.64	C3'-endo	106.5	100.3	101.8
11)U	11	-13.40	30.56	34.44	38.23	C3'-endo	106.3	104.5	99.6
12)CC	12	-23.72	35.54	16.92	37.75	C3'-endo	105.5	106.0	98.1
Tors	sions	Chi C1'-N	Gamma C5'-C4'	Delta C4'-C3'	Epsil C3'-O3'	Zeta 03'-P	Alpha P-05'	Beta 05'-CS	5'
1)G(2)A(2 1 2 2	-175.47 -161.23	56.47 35.27	88.10 89.25	-137.35 -157.07	-89.36 -67.86	-59.02 -56.86	173.00 166.95	0 5

3)CC	3	-159.94	59.72	81.05	-162.30	-56.02	-76.32	-174.07	7
4)AC	4	-153.27	52.76	77.49	-166.57	-53.32	152.44	178.05	5
5)CC	5	-169.88	-176.07	88.27	-150.65	-64.61	-64.25	170.46	5
6)CC	6	-151.93	48.37	66.85	-160.19	-78.93	135.17	-150.70	0
7)UC	7	176.69	-158.98	94.38	-130.89	-73.83	-73.94	163.83	3
8)GC	8	-153.66	62.00	77.59	-148.95	-61.52	-72.65	162.66	5
9)AC	9	-156.73	78.12	73.13	-170.99	-67.21	-89.89	-173.96	5
10)UC	10	-161.01	65.98	75.34	-148.60	-51.64 -	128.41	152.23	3
11)UC	11	-176.66	132.39	73.13	-147.16	-70.93	-56.95	166.48	3
12)CC	12	-166.23	51.61	82.13				••••	
2nd c	trand	C11_C21		Phace	Ampli	Buckor	C1 !	(2)	(3)
ZIIU S	LI allu	CI -C2	(2 -(3	Fliase	Allipti	FUCKET	CI	C2	0
1)CD	12	31.85	-34.88	172.05	35.88	C2'-endo	106.2	102.2	103.3
2)TD	11	32.33	-21.08	130.20	33.51	C1'-exo	105.4	104.1	104.3
3)GD	10	0.21	23.43	55.41	42.72	C4'-exo	107.1	103.2	101.7
4)TD	9	40.09	-29.77	140.25	40.10	C1'-exo	105.0	101.5	103.5
5)GD	8	18.58	-9.35	117.20	21.13	C1'-exo	107.1	106.0	104.8
6)GD	7	4.17	17.83	61.30	38.23	C4'-exo	107.6	104.3	102.6
7)AD	6	41.66	-28.49	134.13	42.40	C1'-exo	104.5	101.2	103.5
8)CD	5	40.66	-30.63	140.90	40.73	C1'-exo	105.0	101.3	103.7
9)UD	4	14.91	5.12	80.86	33.91	01'-endo	105.7	107.1	103.3
10)AD	3	40.40	-29.78	138.95	40.61	C1'-exo	104.6	101.8	103.7
11)AD	2	29.19	-20.13	133.58	29.90	C1'-exo	105.7	104.5	104.8
12)GD	1	-23.46	19.74	329.74	23.47	C2'-exo	107.7	105.1	104.4
Torsi	ons	Chi	Gamma	Delta	Epsil	Zeta	Alpha	Beta	
		C1'-N	C5'-C4'	C4'-C3	' C3 ['] -03	' 03'-P	P-05'	05'-C	5'
1)CD	12	-94.95	36.56	145.09					
2)TD	11	-133.74	58.61	122.50	-172.62	-92.78	-57.07	-168.29	9
3)GD	10	-170.30	-155.91	77.16	-162.59	-72.68	-61.07	174.73	3
4)TD	9	-129.63	45.64	137.80	-147.99	-107.06	99.85	-150.52	2
5)GD	8	-160.95	51.66	118.58	-174.72	-75.80	-66.66	-170.42	2
6)GD	7	-175.16	-145.22	91.16	-147.37	-96.15	-71.54	170.64	1
7) AD	6	-125.83	47.98	130.08	-160.41	-115.01	106.33	-148.85	5
8)CD	5	-129.68	69.89	133.43	-163.56	-108.18	-66.38	172.78	3
9)UD	4	-149.10	-177.05	96.53	-170.78	-87.18	-78.72	-176.88	3
10)AD	3	-125.41	45.78	131.28	-171.14	-85.39	134.04	-179.10	2
11)AD	2	-152.03	56.89	123.47	-173.29	-88.83	-60.21	-170.95	2
12)GD	1	-171.04	-165.28	114.90	-143.23	-67.73	-81.28	-178.15	D

_____ |K| Groove parameters | _____

Atom defining backbone: P 12 levels, 3 sub-levels

L	eve	els	Mir	Minor groove				or groov	e	
	i	n	Width	Depth	Angle		Width	Depth	Angle	Diam
G	1	0				G				
	1	1								
	1	2								
	1	3								
А	2	0				Α				
	2	1								19.54
	2	2								20.06
С	3	0	8.26	3.21	28	С				20.42

	3	1	8.78	2.74	29					20.62
	3	2	9.09	2.02	42					20.61
	3	3	8.83	1.98	47		12.12	5.71	66	20.17
А	4	0	8.41	2.03	47	Α	12.83	5.81	67	19.97
	4	1	8.02	2.32	46		13.69	4.06	73	19.79
	4	2	7.70	2.67	41		14.96	1.95	77	19.99
	4	3	7.58	2.94	38		15.91	1.48	76	20.39
С	5	0	7.66	3.17	31	С	10.91	8.85	27	20.73
	5	1	7.99	3.32	26		11.14	8.29	34	20.84
	5	2	8.36	3.30	25		11.91	7.89	36	20.91
	5	3	8.49	3.16	29		13.25	7.21	41	20.97
С	6	0	8.53	2.74	34	С	14.48	6.20	47	21.05
	6	1	8.65	2.19	38		14.71	9.37	8	21.09
	6	2	8.80	2.03	37		14.63	9.64	9	20.99
	6	3	8.90	1.84	41		14.57	9.96	7	20.79
U	7	0	8.97	1.91	42	U	14.39	10.15	6	20.56
	7	1	8.98	2.26	42		13.92	10.23	10	20.19
	7	2	8.89	2.60	36		13.38	10.27	15	19.68
	7	3	8.69	2.69	34		12.58	9.71	29	19.48
G	8	0	8.55	2.70	31	G	11.45	9.45	32	19.59
	8	1	8.52	2.56	35					19.95
	8	2	8.57	2.66	34					20.43
	8	3	8.62	2.76	35					20.94
А	9	0	8.81	2.77	36	Α				21.35
	9	1	9.23	2.21	36					21.55
	9	2	9.14	1.67	45					21.21
U	10	0	8.73	1.73	44	U				20.47
	10	1	8.24	2.30	41					19.88
	10	2								20.04
U	11	0				U				
	11	1								
	11	2								
	11	3								
С	12	0				С				

Table S5. Curves output for RNA:DNA duplex C (orange molecule, 20% occupancy, Figure 3 – main paper).

****** ***** CURVES 5.3 R.L. 1998 ***** * 16 Aug 16 * ***** FILE : 5SWM.pdb LIS : orange dna : axin : daf : axout: PDB : orange 0.000 wid : 0.750 acc : maxn : 500 ior : 0 ibond: 0 splin: break: -1 3 nleve: 3 nbac : 7 supp : COMB : ends : F Т Т DINU : Т mini : Т rest : F line : F zaxe : F FIT Т test : F : Т GRV Т old axonl: : : F Least squares fitting of standard bases ... Pos Str Base Rms (ang) 1: 1) CC 1.844 1 1: 2) AC 2 0.067 СС 3 1 : 3) 0.041 1: 4) AC 4 0.059 5 1 : 5) CC 0.031 1: 6) СС 6 0.047 1: UC 7) 7 0.071 1: 8) СС 8 1.833 1: 9 9) AC 0.061 1: UC 10 0.054 10) 1: 11) UC 11 0.058 1: 12) СС 12 0.038 2: CD 0.019 1) 12 2: 2) TD 11 0.023 2: 0.058 3) GD 10 2: 4) TD 9 0.030 2: 5) GD 8 0.022 2: 6) GD 7 0.027 2: 7) AD 6 0.020 2: 8) CD 5 0.032 2: 9) UD 4 0.064 2 : 10) AD 3 0.025 2: 2 11) AD 0.025 2: 1 0.043 12) GD Strand= 2 Nucleo= 24 Atoms = 495 Units = 24 Input 1) Xdisp= 0.00 Ydisp= 0.00 Inclin= 0.00 Tip= 0.00 Combined strands have 12 levels ... 1 has 12 bases (5'-3'): CACACCUCAUUC Strand 2 has 12 bases (3'-5'): CTGTGGACUAAG Strand FIRST SUM= 266.231 CPTS: 15.005 31.518 18.416 201.292

CTED	1 CUM_	266 221 DEL-	0 0005100
SILP	1 50M-	200.231 DEL-	0.00000
STEP	2 SUM=	22/.6/1 DEL= -	-0.386E+02
STEP	3 SUM=	189.171 DEL= -	-0.385E+02
STEP	4 SUM=	198.687 DFI =	0.952F+01
STEP	5 SUM-	152 881 DEL -	-0 158E+02
		100 254 DEL	
STEP	6 SUM=	108.354 DEL= -	-0.445E+02
STEP	7 SUM=	98.418 DEL= -	-0.994E+01
STEP	8 SUM=	87.530 DEL= -	-0.109E+02
STEP	9 SUM=	78.106 DEL= -	-0.942E+01
STEP	10 SUM-	70 786 DFL = -	-0 732F+01
STED	11 CIM-	66 117 DEL-	01/52E+01
	11 3000-	00.11/ DLL	-0.407L+01
STEP	12 SUM=	02.054 DEL= -	-0.340E+01
STEP	13 SUM=	63.011 DEL=	0.357E+00
STEP	14 SUM=	61.007 DEL= -	-0.200E+01
STEP	15 SUM=	58.728 DEL= -	-0.228E+01
STEP	16 SUM=	55.937 DFI = -	-0.279F+01
STED	17 CUM-	92 901 DEL-	0 270E+01
	17 3011-	02:091 DLL-	0.270L+02
STEP	18 SUM=	55./04 DEL= -	-0.2/2E+02
STEP	19 SUM=	55.440 DEL= -	-0.264E+00
STEP	20 SUM=	54.968 DEL= -	-0.472E+00
STEP	21 SUM=	54.211 DEL= -	-0.757E+00
STEP	22 SUM=	59.452 DFI =	0.524F+01
STEP	23 SUM-	5/ 015 DEL -	-0 5//E+01
	23 SUM-	57 717 DEL-	0.3005,00
	24 JUM	55.717 DEL	-0.2392+00
STEP	25 SUM=	53.340 DEL= -	-0.3/0E+00
STEP	26 SUM=	53.038 DEL= -	-0.302E+00
STEP	27 SUM=	52.625 DEL= -	-0.413E+00
STEP	28 SUM=	51.983 DEL= -	-0.642E+00
STEP	29 SUM=	51.153 DEL= -	-0.830E+00
STEP	30 SUM=	50.922 DEL= -	-0.231E+00
STEP	31 SUM=	50.497 DFI = -	-0.425F+00
STEP	32 SUM-	/0 512 DEL	0 085E+00
STED	33 SIM-	71 316 DEL-	0 210E+00
		/1.310 DLL-	0.2100-02
STEP	34 SUM=	49.4/6 DEL= -	-0.218E+02
STEP	35 SUM=	49.406 DEL= -	-0./01E-01
STEP	36 SUM=	48.975 DEL= -	-0.431E+00
STEP	37 SUM=	49.935 DEL=	0.960E+00
STEP	38 SUM=	48.847 DEL= -	-0.109E+01
STEP	39 SUM=	49.226 DFL=	0.380F+00
STEP	40 SUM=	48 821 DFL = -	-0 405E+00
STED	10 SUM-	18 773 DEL-	0 180E-01
	42 CUM-	40 626 DEL-	0 1275 00
	42 SUM=	40.030 DEL= -	-0.157E+00
STEP	43 SUM=	48.590 DEL= -	-0.462E-01
STEP	44 SUM=	48.543 DEL= -	-0.465E-01
STEP	45 SUM=	48.525 DEL= -	-0.177E-01
STEP	46 SUM=	48.505 DEL= -	-0.203E-01
STEP	47 SUM=	48.496 DEL= -	-0.896E-02
STEP	48 SUM=	48.492 DFI = -	-0.453F-02
STED	10 SUM-	18 182 DEL-	0 317E_02
		40.400 DEL	0 1/1E 02
STEP	50 50M=	40.407 DEL= -	-0.1410-02
STEP	51 SUM=	48.48/ DEL= -	-0.235E-03
STEP	52 SUM=	48.487 DEL= -	-0.177E-04
STEP	53 SUM=	48.487 DEL= -	-0.214E-05
STEP	54 SUM=	48.487 DEL= -	-0.672E-06
STEP	55 SUM=	48.487 DEL= -	-0.411E-06
STEP	56 SUM=	48.487 DFI = -	-0.609F-07
STEP	57 SUM=	48.487 DFI = -	-0.136F-07
STEP	58 CIIM-	18 187 DEL-	.0 110F_02
	JU JUN-		0.1136-00

MINIMISATION: ACC = 0.100E-05 MAXN= 500 NVAR= 48

STEP	59 SUM=	48.487 DEL= -0.217E-09
STEP	60 SUM=	48.487 DEL= -0.239E-10
STEP	61 SUM=	48.487 DEL= -0.201E-11
STEP	62 SUM=	48.487 DEL= -0.924E-13
STEP	63 SUM=	48.487 DEL= -0.711E-14
STEP	64 SUM=	48.487 DEL= 0.000E+00

FINAL SUM= 48.487 CPTS: 10.567 24.629 8.936 4.355

GRA=-0.51E-08-0.35E-08 0.55E-09 0.33E-09 0.17E-08-0.10E-07-0.51E-09-0.12E-08 GRA= 0.43E-08 0.78E-09-0.71E-09-0.24E-09 0.12E-07-0.16E-07-0.12E-08 0.21E-08 GRA=-0.13E-07 0.17E-07-0.19E-09-0.40E-09-0.10E-07 0.40E-08-0.16E-08 0.17E-09 GRA= 0.47E-08-0.65E-08-0.13E-09 0.40E-11 0.87E-08-0.93E-08 0.26E-08-0.42E-09 GRA= 0.80E-08 0.63E-10-0.17E-09-0.19E-08-0.96E-08-0.52E-08-0.14E-08 0.47E-09 GRA=-0.22E-08 0.13E-08 0.60E-09-0.16E-08 0.16E-08 0.11E-07 0.20E-08 0.15E-08

|A| Global axis parameters | _____ -0.934 -0.198 -0.298 P: 11.119 1.480 17.404 D: 1) U: 3.131 -0.939 -0.279 -0.203 P: 7.045 0.309 16.587 D: 2) U: 6.284 -0.957 -0.282 0.067 P: -0.916 -0.237 0.323 P: 3) U: 4.022 -0.661 16.185 D: 4.364 4) U: -0.232 -2.261 17.227 D: 3.351 5) U: -0.901 -0.225 0.370 P: -2.250 -3.052 18.064 D: 4.917 4.401 6) U: -0.913 -0.090 0.398 P: -5.748 -4.346 19.870 D:

 -0.090
 0.396
 P:
 -3.748
 -4.340
 19.870
 D:

 0.063
 0.447
 P:
 -8.913
 -4.492
 21.924
 D:

 0.163
 0.354
 P:
 -11.817
 -4.231
 23.513
 D:

 0.268
 0.031
 P:
 -14.451
 -3.603
 23.606
 D:

 0.213
 -0.199
 P:
 -18.383
 -2.217
 23.055
 D:

 0.108
 -0.356
 P:
 -21.157
 -1.260
 21.772
 D:

 0.037
 -0.434
 P:
 -24.601
 -0.977
 19.931

 3.445 7) U: -0.893 8) U: -0.921 6.226 -0.963 9) U: 5.011 4.437 10) U: -0.956 -0.928 11) U: 2.921 12) U: -0.900

|B| Global Base-Axis Parameters |

1st st	rand	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc
1) CC 2) AC 3) CC 4) AC 5) CC 6) CC 7) UC 8) CC 9) AC 10) UC 11) UC 12) CC	1 2 4 5 6 7 8 9 10 11 12	-2.48 -0.56 -1.86 -0.95 -1.53 -1.93 -2.06 -2.13 -1.83 -1.34 -1.95 -2.56	-2.55 -0.46 -1.03 -0.22 -0.59 -0.60 -0.54 -2.55 -0.65 -0.89 -0.95 -0.31	-0.12 -12.27 -14.74 -38.71 -9.89 -21.87 -22.43 -16.10 -16.90 -25.86 -24.11 -21.96	-22.25 -13.43 -22.89 -0.96 -12.89 -4.50 -10.36 -14.71 -6.67 -4.92 -1.40 -4.55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2nd st	rand	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc
1) CD 2) TD 3) GD 4) TD 5) GD	12 11 10 9 8	-0.48 -0.62 -1.48 -1.12 -1.61	0.10 0.31 0.64 1.08 0.51	-5.58 -0.20 -3.08 11.98 -13.02	9.82 4.66 3.11 -4.14 2.84	3 0 4 -21 1 16 4 -29 1 6

6) GD 7 7) AD 6 8) CD 5 9) UD 4 10) AD 3 11) AD 2 12) GD 1	-1.11 -1.31 -0.77 -1.70 -1.53 -2.21 0.07	0.92 0.93 0.07 0.68 1.35 1.04 1.92	-11.92 -0.12 -5.31 -10.14 -4.05 -13.88 -6.98	-1.19 -5.78 -0.45 -3.32 6.91 -1.48 1.66	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
C Global Base	pair-Axis	Paramete	ers 		
Strand 1 with	strand 2				
Duplex	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc
1) C 1-C 12 2) A 2-T 11 3) C 3-G 10 4) A 4-T 9 5) C 5-G 8 6) C 6-G 7 7) U 7-A 6 8) C 8-C 5 9) A 9-U 4 10) U 10-A 3 11) U 11-A 2 12) C 12-G 1 Average:	-1.48 -0.59 -1.67 -1.04 -1.57 -1.52 -1.68 -1.45 -1.77 -1.44 -2.08 -1.25 -1.46	$-1.32 \\ -0.38 \\ -0.65 \\ -0.55 \\ -0.76 \\ -0.74 \\ -1.31 \\ -0.66 \\ -1.12 \\ -1.00 \\ -1.11 \\ -0.87$	$\begin{array}{r} -2.85\\ -6.23\\ -8.91\\ -13.36\\ -11.45\\ -16.90\\ -11.28\\ -10.71\\ -13.52\\ -14.96\\ -19.00\\ -14.47\\ -11.97\end{array}$	-16.04 -9.04 -13.00 1.59 -7.87 -1.66 -2.29 -7.13 -1.67 -5.92 0.04 -3.11 -5.51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

|D| Global Base-Base Parameters |

Strand 1 with strand 2 ...

Duplex	Shear (Sx)	Stretch (Sy)	Stagger (Sz)	Buckle (kappa)	Propel (omega)	Opening (sigma)	Вс Тс
1) C 1-C 12 2) A 2-T 11 3) C 3-G 10 4) A 4-T 9 5) C 5-G 8 6) C 6-G 7 7) U 7-A 6 8) C 8-C 5 9) A 9-U 4 10) U 10-A 3 11) U 11-A 2 12) C 12-G 1 Average:	-2.00 0.07 -0.38 0.17 0.08 -0.81 -0.75 -1.36 -0.13 0.19 0.26 -2.63 -0.61	-2.46 -0.15 -0.39 0.86 -0.08 0.32 0.39 -2.48 0.04 0.46 0.09 1.61 -0.15	-0.91 -1.18 -0.62 -0.67 -0.72 0.52 -0.56 -0.14 -0.15 0.29 0.15 -0.14 -0.34	5.46 -12.07 -11.67 -50.69 3.13 -9.95 -22.32 -10.79 -6.76 -21.81 -10.24 -14.98 -13.56	-12.43 -8.77 -19.77 -5.10 -10.05 -5.69 -16.13 -15.16 -9.99 1.99 -2.87 -2.89 -8.91	-38.91 0.92 -3.23 5.65 7.10 6.77 7.49 -26.71 4.21 4.13 3.34 26.39 -0.24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
E Global Inter-	-Base Para	ameters					
1st strand	Shift	Slide	Rise	Tilt	Roll	Twist	Dc

				(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
2)	С	1/A	2	2.19	2.24	4.18	-14.02	15.68	73.10	9
3)	А	2/C	3	-1.46	-0.69	3.50	-6.93	5.50	18.50	-6
4)	С	3/A	4	0.97	0.38	4.66	-23.37	37.03	34.52	9
5)	А	4/C	5	-0.73	-0.60	2.28	30.42	-9.56	35.52	-6
6)	С	5/C	6	-0.96	-0.46	4.71	-12.72	16.30	21.50	-1
7)	С	6/U	7	-0.32	-0.43	3.21	4.11	2.19	28.34	-3
8)	U	7/C	8	-0.32	-2.17	3.53	5.06	3.53	1.83	-2
9)	С	8/A	9	0.72	2.03	2.71	-2.41	27.65	57.11	9
10)	А	9/U	10	0.60	-0.67	4.43	-8.96	15.37	23.48	7
11)	U	10/U	11	-0.58	-0.70	3.08	3.29	14.34	27.61	-4
12)	U	11/C	12	-0.48	0.34	3.76	5.01	2.41	34.40	-2
2nd	d s	trand	b	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
2no	d s	tranc	t	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2no 2)	ds C	tranc	d 11	Shift (Dx) 0.13	Slide (Dy) 0.07	Rise (Dz) 4.45	Tilt (tau) 3.51	Roll (rho) -12.02	Twist (Omega) 33.27	Dc -2
2n(2) 3)	d s C T	tranc 12/T 11/G	11 10	Shift (Dx) 0.13 -1.01	Slide (Dy) 0.07 0.45	Rise (Dz) 4.45 2.95	Tilt (tau) 3.51 -7.33	Roll (rho) -12.02 -16.50	Twist (Omega) 33.27 22.64	Dc -2 6
2no 2) 3) 4)	d s C T G	12/T 11/G 10/T	11 10 9	Shift (Dx) 0.13 -1.01 0.41	Slide (Dy) 0.07 0.45 0.87	Rise (Dz) 4.45 2.95 4.71	Tilt (tau) 3.51 -7.33 15.66	Roll (rho) -12.02 -16.50 -22.35	Twist (Omega) 33.27 22.64 25.64	Dc -2 6 -9
2no 2) 3) 4) 5)	d s C T G T	12/T 11/G 10/T 9/G	t 11 10 9 8	Shift (Dx) 0.13 -1.01 0.41 -0.64	Slide (Dy) 0.07 0.45 0.87 -0.34	Rise (Dz) 4.45 2.95 4.71 2.33	Tilt (tau) 3.51 -7.33 15.66 -23.41	Roll (rho) -12.02 -16.50 -22.35 4.61	Twist (Omega) 33.27 22.64 25.64 34.07	Dc -2 6 -9 6
2no 2) 3) 4) 5) 6)	C T G T G	12/T 11/G 10/T 9/G 8/G	11 10 9 8 7	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86	Rise (Dz) 4.45 2.95 4.71 2.33 3.47	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94	Twist (Omega) 33.27 22.64 25.64 34.07 21.82	Dc -2 6 -9 6 1
2no 2) 3) 4) 5) 6) 7)	C T G T G G	12/T 11/G 10/T 9/G 8/G 7/A	11 10 9 8 7 6	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07 -0.39	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86 0.50	Rise (Dz) 4.45 2.95 4.71 2.33 3.47 4.29	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37 16.47	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94 -12.63	Twist (Omega) 33.27 22.64 25.64 34.07 21.82 27.63	Dc -2 6 -9 6 1 3
2no 2) 3) 4) 5) 6) 7) 8)	C T G T G A	12/T 11/G 10/T 9/G 8/G 7/A 6/C	11 10 9 8 7 6 5	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07 -0.39 0.28	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86 0.50 -0.70	Rise (Dz) 4.45 2.95 4.71 2.33 3.47 4.29 3.11	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37 16.47 -6.47	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94 -12.63 -2.56	Twist (Omega) 33.27 22.64 25.64 34.07 21.82 27.63 36.03	Dc -2 6 -9 6 1 3 9
2nd 2) 3) 4) 5) 6) 7) 8) 9)	C T G T G A C	12/T 11/G 10/T 9/G 8/G 7/A 6/C 5/U	11 10 9 8 7 6 5 4	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07 -0.39 0.28 -0.51	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86 0.50 -0.70 0.48	Rise (Dz) 4.45 2.95 4.71 2.33 3.47 4.29 3.11 2.72	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37 16.47 -6.47 -6.45	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94 -12.63 -2.56 -22.48	Twist (Omega) 33.27 22.64 25.64 34.07 21.82 27.63 36.03 26.19	Dc -2 6 -9 6 1 3 9 -2
2nd 2) 3) 4) 5) 6) 7) 8) 9) 10)	ds C T G T G A C U	12/T 11/G 10/T 9/G 8/G 7/A 6/C 5/U 4/A	11 10 9 8 7 6 5 4 3	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07 -0.39 0.28 -0.51 0.28	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86 0.50 -0.70 0.48 1.09	Rise (Dz) 4.45 2.95 4.71 2.33 3.47 4.29 3.11 2.72 3.99	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37 16.47 -6.47 -6.45 6.10	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94 -12.63 -2.56 -22.48 -3.39	Twist (Omega) 33.27 22.64 25.64 34.07 21.82 27.63 36.03 26.19 23.56	Dc -2 6 -9 6 1 3 9 -2 7
2nd 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)	ds C T G T G G A C U A	12/T 11/G 10/T 9/G 8/G 7/A 6/C 5/U 4/A 3/A	11 10 9 8 7 6 5 4 3 2	Shift (Dx) 0.13 -1.01 0.41 -0.64 -0.07 -0.39 0.28 -0.51 0.28 -0.65	Slide (Dy) 0.07 0.45 0.87 -0.34 0.86 0.50 -0.70 0.48 1.09 0.33	Rise (Dz) 4.45 2.95 4.71 2.33 3.47 4.29 3.11 2.72 3.99 3.22	Tilt (tau) 3.51 -7.33 15.66 -23.41 0.37 16.47 -6.47 -6.45 6.10 -8.28	Roll (rho) -12.02 -16.50 -22.35 4.61 -11.94 -12.63 -2.56 -22.48 -3.39 -19.21	Twist (Omega) 33.27 22.64 25.64 34.07 21.82 27.63 36.03 26.19 23.56 28.40	Dc -2 6 -9 6 1 3 9 -2 7 4

|F| Global Inter-Base pair Parameters |

Strand 1 with strand 2 ...

Du	pl€	ex		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) 3)	C A	1/A 2/C	2 3	1.16 -1.24	1.08 -0.57	4.31 3.22	-5.25 -7.13	13.85 11.00	53.19 20.57	9 -6
4)	С	3/A	4	0.69	-0.24	4.68	-3.86	29.69	30.08	9
5)	Α	4/C	5	-0.68	-0.13	2.31	3.50	-7.08	34.79	-6
6)	С	5/C	6	-0.51	-0.66	4.09	-6.18	14.12	21.66	-1
7)	С	6/U	7	-0.35	-0.47	3.75	10.29	7.41	27.98	-3
8)	U	7/C	8	-0.02	-0.74	3.32	-0.71	3.05	18.93	-2
9)	С	8/A	9	0.10	0.77	2.71	-4.43	25.07	41.65	9
10)	А	9/U	10	0.44	-0.88	4.21	-1.43	9.38	23.52	7
11)	U	10/U	11	-0.62	-0.51	3.15	-2.50	16.77	28.00	-4
12)	U	11/C	12	0.96	-0.42	3.91	7.39	2.42	22.88	-2
Av	era	age:		-0.01	-0.25	3.61	-0.94	11.43	29.39	

_____ |G| Local Inter-Base Parameters | _____

1st s	trand		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C	1/A	2	4.69	-0.52	3.10	8.93	6.06	74.43	9
3) A	2/C	3	-0.16	-1.90	3.74	0.01	0.95	22.47 -	-6

4)	С	3/A	4	2.35	-2.79	3.73	-14.11	18.47	42.38	9
5)	Α	4/C	5	-0.34	-2.08	1.80	34.41	-22.31	31.41	-6
6)	С	5/C	6	0.01	-2.43	4.53	-8.48	9.94	24.58	-1
7)	С	6/U	7	0.28	-2.51	2.70	8.34	-9.02	28.43	-3
8)	U	7/C	8	0.35	-3.41	2.88	5.22	2.36	3.23	-2
9)	С	8/A	9	2.66	-1.05	2.94	6.57	10.09	60.03	9
10)	А	9/U	10	1.35	-2.94	3.84	-5.51	5.89	27.53	7
11)	U	10/U	11	-0.01	-2.74	2.42	5.18	1.65	29.32	-4
12)	U	11/C	12	0.03	-2.40	3.29	7.40	-11.50	33.53	-2
2n	ds	strand	ł	Shift	Slide	Rise	Tilt	Roll	Twist	Dc
				(Dx)	(Dy)	(Dz)	(tau)	(rho)	(Omega)	
2)	С	12/T	11	0.81	-0.69	4.44	8.65	10.32	32.91	-2
3)	Т	11/G	10	-0.45	-0.92	3.27	-5.58	15.86	23.55	6
4)	G	10/T	9	0.67	-1.12	5.25	15.43	23.85	25.05	-9
5)	Т	9/G	8	-0.00	-0.48	2.43	-22.85	-4.29	34.55	6
6)	G	8/G	7	0.27	-2.17	3.26	0.20	6.94	23.02	1
7)	G	7/A	6	-0.27	-1.57	4.27	13.93	9.74	29.53	3
8)	А	6/C	5	0.45	-0.07	3.28	-7.47	1.22	36.01	9
9)	С	5/U	4	-0.33	-1.48	2.92	-5.35	18.77	28.52	-2
10)	U	4/A	3	0.78	-2.16	4.12	6.21	0.64	24.78	7
11)	А	3/A	2	0.19	-1.83	3.29	-7.02	14.42	30.33	4
12)	А	2/G	1	2.70	-2.07	3.82	8.98	0.63	12.24	2

|H| Local Inter-Base pair Parameters |

Strand 1 with strand 2 ...

Duplex	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/C 8 9) C 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12	2.77 -0.35 1.52 -0.17 0.08 0.09 0.27 1.17 1.07 0.10 1.37	-0.95 -1.38 -2.05 -1.32 -2.29 -2.10 -1.74 -1.39 -2.53 -2.33 -2.40	3.92 3.52 4.59 2.17 3.87 3.53 3.27 3.00 4.00 2.88 3.47	$\begin{array}{c} 8.37 \\ -2.68 \\ 0.36 \\ 5.73 \\ -4.24 \\ 11.75 \\ -1.09 \\ 0.27 \\ 0.22 \\ -0.61 \\ 8.90 \end{array}$	8.03 8.51 21.93 -12.78 8.20 0.02 1.37 13.90 3.02 8.36 -5.57	53.98 23.81 33.15 33.25 23.82 30.05 19.53 44.63 25.62 30.38 23.41	9 -6 9 -1 -3 -2 9 7 -4 -2
Average:	0.72	-1.86	3.47	2.45	5.00	31.06	

|I| Global Axis Curvature |

Dupl	ex		Ax	Ay	Ainc	Atip	Adis	Angle	Path	Dc
2) C	1/A	2	0.27	0.14	-1.87	6.85	0.30	7.10	4.32	9
3) A	2/C	3	-0.16	-0.12	-4.46	14.96	0.20	15.61	3.20	-6
4) C	3/A	4	0.06	-0.42	0.60	15.10	0.43	15.11	4.66	9
5) A	4/C	5	-0.15	-0.23	1.60	2.38	0.27	2.86	2.32	-6
6) C	5/C	6	-0.56	-0.45	-0.73	7.91	0.72	7.95	4.14	-1
7) C	6/U	7	-0.19	-0.49	4.67	8.04	0.53	9.30	3.78	-3
8) U	7/C	8	-0.25	-0.17	-1.28	7.89	0.30	7.99	3.32	-2

9) C 8	3/A 9	0.42	0.13	-1.62	19.61	0.44	19.68	2.71	L 9
10) A S	9/U 10 3/II 11	0.11	-0.42 -0.61	0.01 1 54	10.82	0.44	10 02	4.2	L /
12) II 11	1/C 12	0.03	-0.30	2.86	5.57	0.33	6.26	3.92) -7
, •	-, •				0107	0100	0120	0101	
0verall	axis	bend	UU= 15	.73 PP=	25.90				
Duple>	ĸ	0ffset	L.Dir	wrt	end-to-	end vecto	r		
1) C 1	1	0 00	0 00						
2) A 2	2	1.42	65.40						
3) C 3	3	2.39	50.84						
4) A 4	4	3.12	42.49						
5) C 5	5	3.62	21.02						
6) C 6	5	4.82	17.71						
7) U 7	7	5.52	6.96						
8) C 8	3	6.07	16.29						
9) A 9	9	5.48	-40.78						
10) U 10	<i>)</i>	3.92	-54.31						
11) 0 11 12) 0 12	L	2.14	-/2.32						
12) (12	Ź	0.00	0.00						
Path 1	length	= 39.7	'8 End-to	o-end=	35.89	Shorteni	ng=	9.76 ⁹	6
J Back	kbone	Parameter	`S						
1st st	trand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
1)CC	1	-22.28	35.29	17.94	37.35	C3'-endo	105.7	103.7	102.9
2)AC	2	-35.32	44.48	3.61	44.84	C3'-endo	103.9	103.7	99.2
3)CC	3	-26.09	37.38	12.99	39.24	C3'-endo	106.7	100.9	102.9
4)AC	4	-29.80	32.00	349.30	32.80	C2'-exo	104.6	104.8	103.4
5)CC	5	-25.54	38.70	17.18	41.43	C3'-endo	106.5	102.3	100.5
6)CC	6	-34.00	26.49	326.60	33.18	C2'-exo	107.1	103.7	102.4
7)UC	7	-37.96	33.77	335.03	38.15	C2'-exo	104.2	103.4	102.3
8)00	8	-27.98	36.//	/.05	3/.4/	C3'-endo	105.9	104.0	101.6
9)AC	10	-28.89	39.14	10.00	40.69	C3'-endo	100.1	102.1	101.0
10)UC	10	-28./0	33.03	20 07	33.34	$C^2 - exo$	104./	103.0	104.0
12)00	12	-22.31	41.87	10.49	43.80	C3'-endo	107.0	103.9	99.3
12,00		51155	11107	10115	15100	es ende	10117	10510	501
Torsio	ons	Chi C1'-N	Gamma C5'-C4'	Delta	Epsil	Zeta 03'-P	Alpha P-05'	Beta	5'
			65 61		65 05	05 1	1 05	05 02	
1)CC	1	-157.99	94.62	78.02	-144.12	-72.49	-63.81	169.11	1
2)AC	2	-157 . 42	53.31	82.27	-154.01	-83.98	-36.97	162.97	7
3)CC	3	-156.50	41.71	80.14	-151.62	-68.01	134 . 95 ·	-169.06	õ
4)AC	4	161.54	-168.02	95.97	-134.64	-79.55	-80.10	164.78	3
5)CC	5	-147.89	72.40	78.87	-176.16	-68.16	123.62	171.24	1
0)((7))((6 7	-104.00	-134.02	110.03	-150.41	-04.41	49.58	-158.41	L =
2)U(2)CC	/ 0	-102.04	-00.90 51 63	82 20	-149.29	-39.00 _81 05	-39./1 _5/ 73	170 7	נ 7
$q) \Lambda C$	o Q	-153 76	16 01	80 71	-148 70	_7 <u>4</u> 17	-J41/2 126 7/ .	157 Q4	, 5
10)110	10	176 60	-158 75	88 70	_1 <u>4</u> 7 00	_72,15	-81.70	173 53	3
11)11	11	-173.83	72.82	77.61	-165.58	-60.53	-61.53	-168.5	5
12)CC	12	-148.92	44.02	81.67					

2nd	strand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
1)CD 2)TD	12 11	31.58 26.47	-34.68 -8.42	172.23 104.80	35.66 34.86	C2'-endo 01'-endo	106.2	102.2 104.1	103.2 104.4
3) GD	10	37.88	-33.41	152.65	38.38	C2'-endo	105.0	101.7	103.7
4) TD	9	30.37	-12.06	109.71	37.33	C1'-exo	105.4	103.8	104.6
5)GD	8	32.98	-20.26	127.78	34.40	C1'-exo	106.2	103.3	104.0
6)GD	7	34.49	-16.05	114.95	39.83	C1'-exo	105.0	103.2	103.8
7)AD	6	28.24	-33.84	179.86	34.49	C2'-endo	106.5	102.7	103.2
8)CD	5	22.24	-2.10	93.72	36.03	01'-endo	105.7	104.2	103.9
9)UD	4	37.05	-21.82	123.90	40.04	C1'-exo	103.7	102.2	104.8
10)AD	3	31.72	-35.82	174.52	36.63	C2'-endo	106.3	101.9	103.2
11)AD	2	-33.37	38.57	357.37	39.50	C2'-exo	106.4	101.2	102.2
12)GD	1	16.50	5.80	81.17	38.07	01'-endo	105.8	104.3	103.5
Tors	ions	Chi	Gamma	Delta	Epsil	Zeta	Alpha	Beta	
		C1'-N	C5'-C4'	C4'-C3	C3'-03'	03'-P	P-05'	05'-C5	5'
1)CD	12	-101.41	60.02	146.28					I
2)TD	11	-128.07	-158.04	109.19	170.09	-90.28	-81.04	-148.58	3
3)GD	10	-107.44	52.55	135.63	-165.12	-90.55	105.28	-169.59)
4)TD	9	-105.60	57.24	110.14	174.83	-91.08	-63.92	-166.61	L
5)GD	8	-148.29	-119.15	119.10	-147.74	-93.52	-72.29	165.24	ļ
6)GD	7	-142.64	74.65	109.11	-156.66	-96.81	78.75	-159.36	5
7)AD	6	-93.08	37.29	149.23	171.69	-96.07	-72.60	173.92	2
8)CD	5	-140.54	-170.47	99.16	-174.14	-81.56	-63.75	-161.28	3
9)UD	4	-123.94	65.42	116.40	-174.91	-83.72	125.72	-177.85	5
10)AD	3	-120.37	61.66	147.09	-174.27	-88.08	-88.39	-169.58	3
11)AD	2	-171.02	164.25	88.03	-156.26	-68.44	-53.20	-174.92	2
12)GD	1	-116.24	-134.24	85.03	142.68	-34.89	160.18	117.59)

|K| Groove parameters |

Atom defining backbone: P 12 levels, 3 sub-levels

L	eve	ls	Mino	or groov	e		Maj	jor groov	e	
	i	n	Width	Depth	Angle		Width	Depth	Angle	Diam
~						~				
C	1	0				C				
	1	1								
	1	2								
	1	3								17.90
	1	4								18.35
Α	2	0				Α				18.32
	2	1								18.29
	2	2								18.24
	2	3	9.18	1.50	66					18.40
С	3	0	8.71	1.57	63	С				18.74
	3	1	8.32	1.90	61					18.93
	3	2	7.91	2.22	60					19.04
	3	3	7.62	2.60	53		14.96	1.91	63	19.00
	3	4	7.51	2.93	49		15.61	-0.63	65	18.85
	3	5	7.52	3.19	46		12.76*	6.37	42	18.69
А	4	0	7.70	3.43	44	Α	12.05*	6.74	35	18.64
	4	1	8.09	3.48	41		11.43	7.64	22	18,69
	4	2	8.38	2.88	51		13.12	7.13	24	18.75
С	5	0	8.36	2.94	52	С	13.97	9.08	-5	18.88
-	5	1	8.32	2.93	54	•	13.92	9.18	-7	19.11
	-	-	0102		-			0.10	•	

	5	2	8.29	2.90	54		13.91	9.28	-6	19.28
	5	3	8.24	2.89	52		13.85	9.44	-10	19.38
	5	4	8.16	2.81	52		13.70	9.44	-11	19.44
С	6	0	8.04	2.89	49	С	13.57	9.41	-11	19.52
	6	1	7.90	3.02	50		13.24	9.41	-6	19.65
	6	2	7.72	3.11	52		12.93	9.51	-7	19.64
	6	3	7.53	3.23	49		12.65	9.54	7	19.39
U	7	0	7.58	3.15	48	U	11.48	8.92	14	19.02
	7	1	7.83	3.15	45		10.69	8.98	16	18.68
	7	2	8.20	3.04	43		10.33	8.91	20	18.47
	7	3	8.52	2.66	49		10.27	9.12	23	18.37
С	8	0	8.73	2.37	51	С	10.54	8.93	29	18.34
	8	1	9.12	1.95	51		11.82	8.53	38	18.52
	8	2	9.24	1.61	61		13.02	3.79	61	18.87
А	9	0	8.78	1.86	59	Α	13.54	1.21	68	19.26
	9	1	8.42	2.02	60		13.74	-1.24	74	19.50
	9	2	8.02	2.20	55					19.72
	9	3	7.71	2.40	51					19.64
	9	4	7.60	2.61	48					18.83
U	10	0	7.63	2.88	43	U				18.16
	10	1	7.61	3.04	39					18.08
	10	2								18.15
	10	3								18.34
U	11	0				U				18.63
	11	1								18.98
	11	2								
	11	3								
	11	4								
С	12	0				С				

***** ***** ***** CURVES 5.3 R.L. 1998 ***** * 24 Jun 16 * ***** ***** FILE : 1zbi_.pdb LIS : ref axin : dna : daf : axout: PDB : ref acc : 0.000 wid : 0.750 500 0 ibond: 0 splin: 3 break: -1 maxn : ior : nleve: 3 nbac : 7 F Т COMB : DINU : Т ends : supp : Т Т mini : F F rest : line : zaxe : F FIT : Т test : F GRV Т old : Т axonl: F : Least squares fitting of standard bases ... Str Pos Base Rms (ang) 1: 1) GC 1 0.026 1: 2) AC 2 0.036 1: 3) СС 3 0.013 1: 4) AC 4 0.021 1: 5) CC 5 0.008 1: 6) CC 6 0.029 7 1: 7) UC 0.021 1: 8) GC 8 0.035 1: 9) AC 9 0.018 1 : 10) UC 10 0.012 1: UC 11) 11 0.021 1 : 12) СС 12 0.031 2: CD 1) 24 0.024 2: 2) TD 23 0.052 2: 3) GD 22 0.022 2: 4) TD 21 0.023 2: 5) 0.064 GD 20 2: 6) GD 19 0.032 2: 7) AD 18 0.041 2: 8) CD 17 0.013 2: 9) TD 16 0.026 2: 10) AD 15 0.039 2: 11) AD 14 0.060 2: 12) 0.055 GD 13 Strand= 2 Nucleo= 24 Atoms = 495 Units = 24 Input 1) Xdisp= 0.00 Ydisp= 0.00 Inclin= 0.00 Tip= 0.00 Combined strands have 12 levels ... 1 has 12 bases (5'-3'); GACACCUGAUUC Strand Strand 2 has 12 bases (3'-5'): CTGTGGACTAAG FIRST SUM= 139.564 CPTS: 3.301 0.678 3.678 131.908

Table S6. Curves output for RNA:DNA duplex.¹

CTED	1 CUM-	130 564 DEL	- 0 0005+00
STLF	1 3011-	139.304 DLL	- 0.000L+00
STEP	2 SUM=	116.267 DEL	= -0.233E+02
STEP	3 SUM=	82.196 DEL	= -0.341E+02
STEP	4 SUM=	63.692 DEL:	= -0.185E+02
CTED	5 CUM-	51 607 DEL	- 0 120E+02
STEP	5 501-	J1.097 DEL	0.1200+02
STEP	6 SUM=	40./92 DEL	= -0.109E+02
STEP	7 SUM=	40.532 DEL	= -0.260E+00
STEP	8 SUM=	35.274 DEL	= -0.526E+01
STEP	Q SIM-	20 750 DEL	0.552E + 01
	10 CUM-	231755 DEL	$- 0.001E_{01}$
STEP	10 501-	24.930 DEL	0.401E+01
STEP	II SUM=	29.593 DEL	= 0.464E+01
STEP	12 SUM=	23.328 DEL	= -0.626E+01
STEP	13 SUM=	21.123 DEL	= -0.221E+01
STEP	14 SUM=	17.336 DEL:	= -0.379F+01
STED	15 CUM-	13 206 DEL	$0.404E\pm01$
	13 30M	13.290 DLL	0.404L+01
STEP	10 SUM=	49.511 DEL	= 0.302E+02
STEP	17 SUM=	12.115 DEL	= -0.374E+02
STEP	18 SUM=	22.174 DEL	= 0.101E+02
STEP	19 SUM=	12.003 DFL	= -0.102F+02
STED	20 SUM-	11 812 DEL	0 101E±00
	20 301-	11.012 DEL	
SIEP		11.019 DEL	= -0.193E+00
STEP	22 SUM=	11.623 DEL	= 0.396E-02
STEP	23 SUM=	11.428 DEL	= -0.195E+00
STEP	24 SUM=	11.485 DEL	= 0.571E-01
STEP	25 SUM=	11 344 DEL	= -0.140F+00
CTED	25 50H= 26 SHM=	11 222 DEL	0 113E+00
SILP	20 301-	11.232 DEL	0.1150+00
SIEP	27 SUM=	11.082 DEL	= -0.149E+00
STEP	28 SUM=	11.758 DEL	= 0.675E+00
STEP	29 SUM=	11.059 DEL	= -0.698E+00
STEP	30 SUM=	11.017 DFL:	= -0.420F - 01
STED	31 SUM-	10 021 DEL	0 061E_01
		10.321 DEL	- 0.1655.00
SIEP	52 SUM	10.750 DEL	= -0.105E+00
SIEP	33 SUM=	11.208 DEL	= 0.453E+00
STEP	34 SUM=	10.721 DEL	= -0.488E+00
STEP	35 SUM=	10.661 DEL	= -0.601E-01
STEP	36 SUM=	10.595 DEL	= -0.653E - 01
STEP	37 SUM-	10 664 DEL	- 0.683E_01
		10.004 DEL	
SIEP	50 SUM	10.540 DEL	= -0.1100+00
SIEP	39 SUM=	10.510 DEL	= -0.365E-01
STEP	40 SUM=	10.447 DEL	= -0.623E-01
STEP	41 SUM=	10.386 DEL	= -0.615E-01
STEP	42 SUM=	10.354 DEL	= -0.321F - 01
STEP	43 SUM=	10 306 DEL	= -0.476E-01
		10 220 DEL	
SIEP	44 5011=	10.220 DEL	= -0.839E-01
STEP	45 SUM=	10.061 DEL:	= -0.159E+00
STEP	46 SUM=	10.148 DEL	= 0.868E-01
STEP	47 SUM=	9.956 DEL	= -0.191E+00
STEP	48 SUM=	9.966 DEL	= 0.100F-01
STEP	10 SUM-	0 017 DEL	0 /01F_01
		0 022 DEL	
SIEP	50 5011=	9.925 DEL	= 0.00/E-02
SIEP	51 SUM=	9.910 DEL	= -0.132E - 01
STEP	52 SUM=	9.914 DEL	= 0.339E-02
STEP	53 SUM=	9.908 DEL	= -0.536E-02
STEP	54 SUM=	9,908 DFL:	= -0.273E - 03
STEP	55 SUM-	0 007 DEL	$= -0.782F_03$
	56 CIM-		
		9.90/ UEL	
SIEP	57 SUME	9.90/ DEL	= -0.044E-03
STEP	58 SUM=	9.906 DEL:	= -0.292E-03

MINIMISATION: ACC = 0.100E-05 MAXN= 500 NVAR= 48

STEP	59	SUM=	9.906	DEL=	-0.149E-03
STEP	60	SUM=	9.906	DEL=	-0.741E-04
STEP	61	SUM=	9.906	DEL=	-0.848E-04
STEP	62	SUM=	9.906	DEL=	-0.663E-04
STEP	63	SUM=	9.906	DEL=	-0.418E-04
STEP	64	SUM=	9.906	DEL=	-0.242E-04
STEP	65	SUM=	9.906	DEL=	0.874E-06
STEP	66	SUM=	9.906	DEL=	-0.897E-05
STEP	67	SUM=	9.906	DEL=	-0.857E-06
STEP	68	SUM=	9.906	DEL=	-0.596E-06
STEP	69	SUM=	9.906	DEL=	-0.513E-07
STEP	70	SUM=	9.906	DEL=	-0.756E-07
STEP	71	SUM=	9.906	DEL=	-0.259E-07
STEP	72	SUM=	9.906	DEL=	-0.323E-08
STEP	73	SUM=	9.906	DEL=	-0.539E-09
STEP	74	SUM=	9.906	DEL=	-0.593E-10
STEP	75	SUM=	9.906	DEL=	-0.231E-10
STEP	76	SUM=	9.906	DEL=	-0.373E-12
STEP	77	SUM=	9.906	DEL=	-0.177E-11
STEP	78	SUM=	9.906	DEL=	-0.240E-12
STEP	79	SUM=	9.906	DEL=	-0.110E-12
STEP	80	SUM=	9.906	DEL=	-0.178E-14
STEP	81	SUM=	9.906	DEL=	0.000E+00

FINAL SUM= 9.906 CPTS: 2.123 3.907 1.521 2.355

GRA= 0.84E-09-0.34E-08 0.25E-08-0.13E-08-0.27E-08 0.27E-08-0.45E-08 0.28E-08 GRA= 0.45E-08 0.99E-10 0.14E-08 0.47E-09 0.52E-09-0.51E-08-0.27E-08 0.15E-08 GRA=-0.20E-08-0.13E-08 0.36E-08-0.59E-09 0.26E-08-0.56E-09 0.96E-09-0.68E-09 GRA= 0.40E-09 0.15E-08 0.97E-09-0.26E-08-0.30E-08-0.93E-09-0.30E-08-0.27E-08 GRA= 0.81E-08-0.14E-08 0.11E-08-0.70E-09-0.93E-09 0.84E-09-0.13E-08-0.23E-09 GRA=-0.13E-08 0.88E-09 0.18E-09 0.88E-09 0.24E-10 0.44E-09 0.12E-08 0.19E-08

A Glob	al axis p	arameter	`s						
1) U: 2) U: 3) U: 4) U: 5) U: 6) U: 7) U: 8) U: 9) U: 10) U:	0.015 0.006 0.069 0.109 0.143 0.149 0.065 -0.119 -0.211 -0.170	-0.988 -0.993 -0.997 -0.994 -0.989 -0.988 -0.988 -0.995 -0.990 -0.973 -0.982	-0.155 -0.116 -0.033 0.011 -0.029 -0.035 -0.071 -0.072 -0.090 -0.087	P: P: P: P: P: P: P: P:	24.719 24.575 24.283 24.634 25.172 26.080 26.423 26.641 25.982 25.116	19.210 15.702 13.274 10.033 6.768 3.404 0.143 -2.398 -5.703 -8.906	67.346 67.075 66.750 66.917 67.277 67.689 67.454 67.215 67.143 66.939	D: D: D: D: D: D: D: D:	0.377 1.139 1.079 1.195 1.382 0.697 1.538 0.864 0.723 0.625
11) U: 12) U:	-0.167 -0.151	-0.977 -0.974	-0.133 -0.170	P: P:	24.476 24.167	-11.757 -14.992	66.531 66.088	D:	0.286

B	Global	Base-Axis	Parameters	

1st strand		Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc	
1) GC 2) AC	1 2	-4.21 -3.55	0.29 0.49	8.36 2.00	-12.04 -15.45	1 0 2 21	
3) CC	3	-4.41	0.57	1.08	-13.82	3 -16	
4) AC	4	-3.96	0.05	-2.41	-10.04	2 29	

5)	СС	5	-4.14	0.70	-3.35	-9.45	3 -6
6)	СС	6	-4.11	-0.16	1.42	-12.03	3 –3
7)	UC	7	-3.92	0.58	-3.24	-10.50	4 -25
8)	GC	8	-4.43	0.27	-1.01	-11.26	1 12
9)	AC	9	-3.97	-0.06	-7.76	-9.79	2 22
10)	UC	10	-4.52	0.22	-7.64	-7.46	4 -24
11)	UC	11	-3.96	-0.48	0.56	-10.29	4 -18
12)	СС	12	-4.22	0.30	-5.21	-9.37	3 0
2nc	d st	rand	Xdisp	Ydisp	Inclin	Tip	Bc Tc
			(dx)	(dy)	(eta)	(theta)	
1)	CD	24	-4.33	-0.45	6.37	1.76	3 0
2)	TD	23	-3.67	-0.07	14.14	2.18	4 -21
3)	GD	22	-4.58	-0.52	6.72	1.61	1 16
4)	TD	21	-3.99	-0.10	11.95	6.85	4 -29
5)	GD	20	-4.27	-0.49	0.88	9.30	16
6)	GD	19	-4.16	0.26	4.14	3.95	13
7)	AD	18	-3.97	-0.05	4.06	6.65	2 25
8)	CD	17	-4.44	-0.13	5.05	1.79	3 -12
9)	TD	16	-4.05	0.03	12.15	2.63	4 -22
10)	AD	15	-4.38	-0.35	7.95	7.36	2 24
11)	AD	14	-3.86	0.32	7.16	1.99	2 18
12)	GD	13	-4.43	-0.61	10.79	4.92	1 0

|C| Global Base pair-Axis Parameters |

Strand 1 with strand 2 ...

Duplex	Xdisp (dx)	Ydisp (dy)	Inclin (eta)	Tip (theta)	Bc Tc
1) G 1-C 24 2) A 2-T 23 3) C 3-G 22 4) A 4-T 21 5) C 5-G 20 6) C 6-G 19 7) U 7-A 18 8) G 8-C 17 9) A 9-T 16 10) U 10-A 15 11) U 11-A 14 12) C 12-G 13 Average:	-4.27 -3.61 -4.49 -3.97 -4.21 -4.14 -3.95 -4.44 -4.01 -4.45 -3.91 -4.33 -4.15	0.37 0.28 0.54 0.08 0.59 -0.21 0.31 0.20 -0.05 0.28 -0.40 0.45	7.37 8.07 3.90 4.77 -1.23 2.78 0.41 2.02 2.19 0.15 3.86 2.79 3.09	-6.90 -8.81 -7.72 -8.45 -9.37 -7.99 -8.58 -6.52 -6.21 -7.41 -6.14 -7.14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5					

|D| Global Base-Base Parameters |

Strand 1 with strand 2 ...

Duplex		Shear (Sx)	Stretch (Sy)	Stagger (Sz)	Buckle (kappa)	Propel (omega)	Opening (sigma)	Bc	Тc
1) G	1-C 24	0.12	-0.16	-0.03	1.99	-10.28	-2.18	1	0
2) A	2–T 23	0.12	0.42	-0.39	-12.14	-13.27	6.46	2	21
3) C	3-G 22	0.17	0.06	-0.03	-5.64	-12.21	0.29	3 -	-16

4) A 4-T 21 5) C 5-G 20 6) C 6-G 19 7) U 7-A 18 8) G 8-C 17 9) A 9-T 16 10) U 10-A 15 11) U 11-A 14 12) C 12-G 13	0.03 0.14 0.05 0.06 0.01 0.08 -0.14 -0.11 0.21	-0.04 0.22 0.11 0.53 0.14 -0.02 -0.13 -0.16 -0.31	-0.24 -0.01 -0.27 0.04 -0.33 -0.39 0.12 0.01 0.11	-14.36 -4.24 -2.72 -7.30 -6.06 -19.91 -15.59 -6.60 -16.00	-3.19 -0.15 -8.08 -3.84 -9.47 -7.15 -0.10 -8.31 -4.45	-1.38 2.09 0.90 8.82 1.28 -1.84 0.38 0.02 -2.60	2 29 3 -6 3 -3 4 -25 1 12 2 22 4 -24 4 -18 3 0
Average:	0.06	0.05	-0.12	-9.05	-6.71	1.02	
E Global Inter	-Base Par	ameters 					
1st strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12	0.50 -1.25 0.66 0.19 0.22 0.18 -0.80 0.45 -0.49 0.65 -0.21	0.42 0.21 -0.50 0.47 -1.49 0.79 -0.23 -0.55 0.03 -0.84 0.99	3.33 2.61 3.15 3.42 3.32 3.44 2.37 3.34 3.57 2.89 3.33	-8.63 -2.36 -2.30 0.67 4.89 -8.70 2.77 -5.08 -1.80 7.86 -5.65	-3.69 7.44 6.98 -1.98 -3.05 4.87 9.81 6.66 0.85 -0.16 3.23	41.38 26.92 26.44 34.56 19.38 40.46 21.95 25.65 31.16 23.11 38.46	2 -6 9 -1 -3 -9 2 7 -4 -2
2nd strand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 24/T 23 3) T 23/G 22 4) G 22/T 21 5) T 21/G 20 6) G 20/G 19 7) G 19/A 18 8) A 18/C 17 9) C 17/T 16 10) T 16/A 15 11) A 15/A 14 12) A 14/G 13	0.50 -1.30 0.80 0.08 0.31 0.17 -0.75 0.38 -0.27 0.62 -0.53	0.16 -0.58 0.40 -0.21 1.38 -0.37 -0.15 0.39 -0.13 0.81 -1.15	3.69 2.26 3.36 3.19 3.57 3.14 2.74 3.40 3.06 3.01 3.22	5.50 -8.86 6.42 -9.45 3.38 -4.12 1.53 8.77 -6.12 -1.13 3.75	0.70 -6.39 2.05 5.02 -4.88 -0.64 -15.44 -4.34 6.20 -8.05 0.62	32.74 33.10 28.10 31.09 20.56 32.54 29.50 28.76 28.93 23.47 41.09	-2 6 -9 6 1 3 9 -2 7 4 2

|F| Global Inter-Base pair Parameters | -----

Strand 1 with strand 2 ...

Duple	х		Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G	1/A	2	0.50	0.13	3.51	-1.56	-2.19	37.06	2
3) A	2/C	3	-1.27	0.40	2.44	-5.61	6.92	30.01	-6
4) C 5) A	3/A 4/C	4 5	0./3 0.14	-0.45 0.34	3.26	2.06 -4.39	2.4/	27.27	9 -6
6) C	5/C	6	0.27	-1.43	3.45	4.14	0.91	19.97	-1
7) C	6/U	7	0.17	0.58	3.29	-6.41	2.76	36.50	-3

8) U 9) G 10) A 11) U 12) U	7/G 8 8/A 9 9/U 10 10/U 11 11/C 12	-0.77 0.42 -0.38 0.63 -0.37	-0.04 -0.47 0.08 -0.82 1.07	2.56 3.37 3.32 2.95 3.27	2.15 1.84 -3.96 3.37 -0.95	12.63 5.50 -2.67 3.94 1.31	25.72 27.21 30.05 23.29 39.78	-9 2 7 -4 -2
			-0.00	5.15	-0.05	2.33	29.97	
G Loc 	al Inter	-Base Para	meters 					
1st s	trand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 3) A 4) C 5) A 6) C 7) C 8) U 9) G 10) A 11) U 12) U	1/A 2 2/C 3 3/A 4 4/C 5 5/C 6 6/U 7 7/G 8 8/A 9 9/U 10 10/U 11 11/C 12	$ \begin{array}{r} 1.03 \\ -0.68 \\ 1.19 \\ 0.50 \\ 0.70 \\ 0.74 \\ -0.39 \\ 1.04 \\ -0.06 \\ 1.09 \\ 0.47 \\ \end{array} $	-2.01 -1.56 -2.46 -2.12 -2.91 -2.11 -1.91 -2.68 -2.71 -2.69 -1.89	3.36 3.32 3.17 3.11 3.55 3.19 3.37 3.17 2.82 3.38	$ \begin{array}{r} 1.60\\ 4.63\\ 3.26\\ 6.43\\ 8.34\\ -0.35\\ 7.34\\ -0.14\\ 2.77\\ 11.18\\ 1.18\\ \end{array} $	0.24 8.15 6.58 -3.72 -3.33 4.32 8.96 4.66 -3.35 -1.51 1.65	42.07 26.48 26.40 33.80 18.17 41.41 21.34 26.45 30.60 21.84 38.91	2 -6 9 -1 -3 -9 2 7 -4 -2
2nd s	trand	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) C 3) T 4) G 5) T 6) G 7) G 8) A 9) C 10) T 11) A 12) A	24/T 23 23/G 22 22/T 21 21/G 20 20/G 19 19/A 18 18/C 17 17/T 16 16/A 15 15/A 14 14/G 13	0.38 -1.27 0.88 0.45 0.67 0.53 -0.52 0.45 -0.04 0.88 -0.42	-1.73 -1.31 -1.83 -1.66 -2.74 -1.66 -1.77 -1.91 -1.42 -2.07 -1.27	4.02 3.02 3.93 3.20 3.60 3.46 3.70 4.11 3.27 3.42 3.66	$\begin{array}{c} 6.30 \\ -7.76 \\ 8.26 \\ -4.61 \\ 5.69 \\ -1.30 \\ 3.17 \\ 9.65 \\ -3.49 \\ 0.75 \\ 5.92 \end{array}$	5.02 12.12 2.57 -1.47 5.68 2.86 17.58 8.54 -1.02 10.98 5.80	32.13 31.94 26.70 32.21 20.08 32.47 28.60 27.42 29.18 23.02 39.98	-2 6 9 6 1 3 9 -2 7 4 2
H Loc	al Inter	-Base pair	Paramete	rs				
Stran	d 1 with	strand 2						
Duple	ex	Shift (Dx)	Slide (Dy)	Rise (Dz)	Tilt (tau)	Roll (rho)	Twist (Omega)	Dc
2) G 3) A 4) C 5) A 6) C 7) C 8) U 9) G 10) A 11) U	1/A 2 2/C 3 3/A 4 4/C 5 5/C 6 6/U 7 7/G 8 8/A 9 9/U 10 10/U 11	$\begin{array}{c} 0.73 \\ -0.99 \\ 1.05 \\ 0.47 \\ 0.69 \\ 0.64 \\ -0.44 \\ 0.76 \\ -0.05 \\ 0.99 \end{array}$	-1.87 -1.41 -2.17 -1.89 -2.83 -1.87 -1.85 -2.32 -2.05 -2.40	3.70 3.19 3.56 3.16 3.39 3.51 3.44 3.77 3.28 3.13	4.03 -1.47 5.75 0.93 7.09 -0.86 5.49 4.78 -0.35 6.05	2.56 10.43 4.54 -2.52 1.19 3.62 13.35 6.56 -2.17 4.79	37.35 29.42 26.32 32.95 19.24 36.94 25.18 27.02 29.72 22.89	2 -6 9 -1 -3 -9 2 7 -4

12) U 11/C 12	0.02	-1.59	3.55	3.56	3.72	39.51	-2			
Average:	0.35	-2.02	3.43	3.18	4.19	29.68				
I Global Axis Curvature										
Duplex	Ax	Ay Ai	nc Atip	Adis	Angle	Path	Dc			
2) G 1/A 2 3) A 2/C 3 4) C 3/A 4 5) A 4/C 5 6) C 5/C 6 7) C 6/U 7 8) U 7/G 8 9) G 8/A 9 10) A 9/U 10 11) U 10/U 11 12) U 11/C 12	-0.16 0 -0.39 0 0.21 0 0.37 -0 0.20 -0 -0.20 0 -0.28 0 -0.01 -0 0.05 -0 0.10 -0 0.05 0	.22 -2. .13 -1. .02 1. .18 1. .63 0. .06 -4. .07 0. .23 1. .25 -1. .14 -0. .22 0.	$\begin{array}{cccc} 27 & -0.28 \\ 44 & 5.82 \\ 19 & 3.20 \\ 62 & -2.58 \\ 12 & -0.47 \\ 04 & 3.34 \\ 55 & 10.58 \\ 67 & 5.18 \\ 91 & -1.47 \\ 34 & 2.68 \\ 12 & 2.31 \end{array}$	0.28 0.41 0.21 0.41 0.66 0.06 0.29 0.23 0.25 0.17 0.22	2.28 5.99 3.41 3.04 0.48 5.24 10.59 5.45 2.42 2.70 2.31	3.52 2.47 3.26 3.33 3.51 3.29 2.56 3.37 3.32 2.95 3.28	2 -6 9 -6 -1 -3 -9 2 7 -4 -2			
Overall axis b	end UU=	9.58 P	P= 4.56							
Duplex	Offset L.	Dir	wrt end-to	-end vecto	or					
1) G 1 2) A 2 3) C 3 4) A 4 5) C 5 6) C 6 7) U 7 8) G 8 9) A 9 10) U 10 11) U 11 12) C 12	$\begin{array}{cccc} 0.00 & 0\\ 0.17 & 31\\ 0.51 & -6\\ 0.11 & 43\\ 0.76 & 95\\ 1.86 & 74\\ 2.17 & 26\\ 2.36 & -0\\ 1.81 & -19\\ 1.06 & -37\\ 0.41 & -45\\ 0.00 & 0\\ \end{array}$.00 .05 .57 .64 .10 .72 .81 .45 .32 .40 .60 .00								
Path length=	34.86 E	nd-to-end	= 34.23	Shorteni	ing=	1.82 %	;			
J Backbone P	arameters									
1st strand	C1'-C2' C2'	-C3' Pha	se Ampli	Pucker	C1'	C2'	C3'			
1)GC 1 2)AC 2 3)CC 3 4)AC 4 5)CC 5 6)CC 6 7)UC 7 8)GC 8 9)AC 9 10)UC 10 11)UC 11 12)CC 12	$\begin{array}{ccccc} -27.67 & 39 \\ -27.76 & 38 \\ -25.13 & 37 \\ -31.98 & 40 \\ -26.94 & 41 \\ -26.52 & 36 \\ -27.86 & 40 \\ -22.27 & 39 \\ -32.55 & 40 \\ -26.57 & 41 \\ -20.74 & 37 \\ -25.68 & 40 \end{array}$.58 12. .83 11. .89 16. .85 4. .11 16. .77 10. .38 13. .13 24. .80 3. .55 18. .26 25. .53 18.	89 41.37 35 40.37 16 40.19 97 41.84 28 43.47 57 38.11 28 42.18 23 43.66 42 41.72 29 44.58 08 41.78 63 43.48	C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo C3'-endo	106.6 106.9 107.2 106.0 106.7 106.7 107.3 107.0 107.6 106.2 106.8 107.3	101.3 101.1 101.2 100.9 100.6 101.4 100.6 100.8 100.5 100.5 100.5 101.6 100.9	101.5 102.0 102.0 101.3 101.8 102.8 101.9 101.2 101.4 100.7 101.8 101.2			

Torsions	Chi C1'-N	Gamma C5'-C4'	Delta C4'-C3'	Epsil 'C3'-03	Zeta ' 03'-P	Alpha P–05'	Beta 05'-C	5'
1)GC 1 2)AC 2 3)CC 3 4)AC 4 5)CC 5 6)CC 6 7)UC 7 8)GC 8 9)AC 9 10)UC 10 11)UC 11 12)CC 12	-171.80 -159.24 -152.85 -177.16 -163.69 -175.51 -157.05 -151.75 179.51 -165.67 -176.53 -162.15	44.77 52.67 44.92 -179.43 50.51 147.99 42.39 46.77 -178.88 46.99 127.58 51.44	82.44 84.65 81.09 83.99 78.31 84.60 79.59 78.59 84.42 75.69 79.59 74.50	-156.12 -152.65 -166.58 -138.54 -144.11 -141.45 -151.47 -176.22 -141.96 -148.28 -140.64	-64.37 -75.61 -61.47 -77.94 -53.36 - -70.13 -72.92 -62.37 -69.91 -55.23 - -80.84	-67.08 -61.65 152.36 -56.04 -122.01 -61.94 -58.29 155.05 -59.58 -109.58 -60.82	-177.07 176.33 -170.82 161.90 134.70 -179.29 173.79 -172.82 174.73 149.99 166.72	7 3 2 2 3 9 2 3 9 1
2nd strand	C1'-C2'	C2'-C3'	Phase	Ampli	Pucker	C1'	C2'	C3'
1)CD 24 2)TD 23 3)GD 22 4)TD 21 5)GD 20 6)GD 19 7)AD 18 8)CD 17 9)TD 16 10)AD 15 11)AD 14 12)GD 13 Torsions	34.30 31.29 39.23 33.27 37.70 35.10 29.78 36.49 33.91 33.43 28.53 33.53 Chi	-33.65 -15.87 -32.87 -27.31 -24.25 -32.97 -14.69 -28.54 -23.82 -26.27 -25.49 -30.50 Gamma	162.46 117.33 148.99 146.70 130.16 158.92 116.09 143.22 135.20 143.58 154.14 156.38 Delta	35.98 35.46 39.38 33.43 38.86 36.17 34.16 36.57 34.49 33.45 28.93 34.13 Epsil	C2'-endc C1'-exo C2'-endc C1'-exo C1'-exo C1'-exo C1'-exo C1'-exo C1'-exo C2'-endc C2'-endc C2'-endc	<pre>105.2 104.4 104.6 105.3 104.3 104.3 105.7 104.4 104.7 105.1 105.4 106.5 106.1</pre>	102.7 104.5 101.4 103.0 103.0 102.2 105.1 102.6 103.3 103.4 104.0 102.8 Beta	102.8 104.5 103.0 104.2 103.4 103.3 104.6 103.6 104.3 104.1 104.6 103.6
1)CD 24 2)TD 23 3)GD 22 4)TD 21 5)GD 20 6)GD 19 7)AD 18 8)CD 17 9)TD 16 10)AD 15 11)AD 14 12)GD 13	C1'-N -120.74 -137.01 -122.07 -120.47 -129.05 -116.89 -148.10 -125.73 -120.98 -121.48 -125.34 -125.34 -120.17	C5'-C4' 44.08 -166.85 45.46 48.90 36.95 45.07 -161.58 44.08 44.34 37.38 42.22 41.61	C4'-C3' 142.23 115.24 136.00 133.79 121.74 139.81 116.30 129.94 125.44 130.66 138.46 139.95	-177.53 -169.88 -176.51 -176.62 179.63 -170.03 -164.58 -176.58 -178.94 179.91 175.50	' 03'-P -93.43 -90.67 -101.96 -113.96 -91.12 -92.34 -89.54 -95.52 -105.29 -94.61 -102.56	P-05' -54.23 120.39 -57.77 -51.80 -64.42 -66.08 114.51 -57.36 -45.44 -58.72 -60.88	05'-C -168.24 -173.08 -173.74 -179.27 -167.02 -167.02 -167.15 -176.74 -176.74 -175.80 -164.48 -165.83	5' 4 3 4 7 2 5 4 4 3 0 3 3

|K| Groove parameters |

Atom defining backbone: P 12 levels, 3 sub-levels

Levels		ls	Min	or groov	e		Major groove			
	i	n	Width	Depth	Angle		Width	Depth	Angle	Diam
G	1	0				G				
	1	1								
	1	2								

	1	3								
Α	2	0				Α				
	2	1								
	2	2	9.28	1.75	43					
С	3	0	8.78	1.68	39	С				19.63
	3	1	8.32	2.07	39					20.11
	3	2	7.97	2.48	35		13.66	3.57	77	20.44
	3	3	7.81	2.77	34		14.66*	3.22	75	20.90
Α	4	0	7.87	3.04	29	Α	16.28	0.91	78	21.34
	4	1	8.10	3.16	23		13.86	6.54	56	21.57
	4	2	8.27	2.93	25		15.55	7.10	49	21.64
	4	3	8.25	2.74	27		17.09	2.75	69	21.64
С	5	0	8.17	2.36	29	С	18.02*	3.75	64	21.58
	5	1	8.17	2.10	34		12.38	9.62	15	21.53
	5	2	8.21	2.06	35		12.32	9.77	12	21.46
	5	3	8.21	2.12	37		12.39	9.97	12	21.42
С	6	0	8.19	2.31	37	С	12.53	10.21	11	21.46
	6	1	8.20	2.42	41		12.98	10.57	14	21.61
	6	2	8.34	2.48	41		12.96	10.66	26	21.76
	6	3	8.73	2.35	40		12.71	10.74	33	21.84
U	7	0	9.18	2.12	40	U	12.16	10.71	36	21.88
	7	1	9.48	1.67	43		11.57	11.00	35	21.83
	7	2	9.26	1.65	43		11.03	11.26	31	21.37
G	8	0	8.69	1.76	43	G				21.31
	8	1	8.18	2.14	42					21.33
	8	2	7.79	2.55	37					21.37
	8	3	7.66	2.72	38					21.40
Α	9	0	7.82	2.95	34	Α				21.34
	9	1	8.15	2.89	29					21.23
	9	2	8.44	2.66	28					21.06
	9	3	8.55	2.36	29					20.82
U	10	0	8.65	2.09	29	U				20.51
	10	1								20.22
	10	2								
U	11	0				U				
	11	1								
	11	2								
	11	3								
С	12	0				С				

Acknowledgement

Use of the APS was supported by the U. S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357.

References

- Nowotny, M., Gaidamakov, S. A., Crouch, R. J. and Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. *Cell*, 2005, 1,1005-16.
- Egli, M. and Pallan, P. S. Generating Crystallographic Models of DNA Dodecamers From Structures of RNase H:DNA Complexes. In: *Nucleic Acid Crystallography: Methods and Protocols*, Methods in Molecular Biology, **2015**, Vol. 1320 (Ennifar, E., ed.), Humana Press, Springer Science and Business Media, New York, NY, chapter 8, 111-126.
- 3. Jancarik J, Kim S. H. Sparse matrix sampling: A screening method by crystallization of proteins. *J Appl. Cryst.*, **1991**, *24*, 409-411.
- Kawasaki, A. M., Casper, M. D., Freier, S. M., Lesnik, E. A., Zounes, M. C., Cummins, L. L., Gonzalez, C. and Cook, P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. *J. Med. Chem.*, **1993**, *36*, 831-841.
- 5. Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Meth. Enzymol.*, **1997**, *276*, 307-326.
- Vagin, A. and Teplyakov, A., MOLREP: an automated program for molecular replacement. *J. Appl. Cryst.*, **1997**, *30*, 1022-1025.
- 7. Winn, M. D., Isupov, M. N. and Murshudov, G. N. Overview of the CCP4 suite and current developments. *Acta Cryst. D*, **2001**, *57*, 122-133.
- 8. Murshudov, G. N., Vagin, A. A. and Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Cryst. D*, **1997**, *53*, 240-255.
- Emsley, P. and Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Cryst. D*, 2004, 60, 2126-2132.

- Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. UCSF Chimera, a visualization system for exploratory research and analysis. *J. Comp. Chem.*, 2004, 25, 1605-1612.
- 11. Lavery, R., and Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. *J. Biomol. Struct. Dyn.*, **1989**, *6*, 655-667.