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Abstract

The circadian clock in the cyanobacterium Synechococcus elongatus is composed of a post-translational oscillator (PTO) that
can be reconstituted in vitro from three different proteins in the presence of ATP and a transcription-translation feedback
loop (TTFL). The homo-hexameric KaiC kinase, phosphatase and ATPase alternates between hypo- and hyper-
phosphorylated states over the 24-h cycle, with KaiA enhancing phosphorylation, and KaiB antagonizing KaiA and
promoting KaiC subunit exchange. SasA is a His kinase that relays output signals from the PTO formed by the three Kai
proteins to the TTFL. Although the crystal structures for all three Kai proteins are known, atomic resolution structures of Kai
and Kai/SasA protein complexes have remained elusive. Here, we present models of the KaiAC and KaiBC complexes derived
from solution small angle X-ray scattering (SAXS), which are consistent with previous EM based models. We also present a
combined SAXS/EM model of the KaiC/SasA complex, which has two N-terminal SasA sensory domains occupying positions
on the C-terminal KaiC ring reminiscent of the orientations adopted by KaiB dimers. Using EM we demonstrate that KaiB and
SasA compete for similar binding sites on KaiC. We also propose an EM based model of the ternary KaiABC complex that is
consistent with the sequestering of KaiA by KaiB on KaiC during the PTO dephosphorylation phase. This work provides the
first 3D-catalogue of protein-protein interactions in the KaiABC PTO and the output pathway mediated by SasA.
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Introduction

The circadian clock in the cyanobacterium Synechococcus elongatus

(S. elongatus) ticks in the absence of transcription and translation

[1]. A mixture of the KaiA, KaiB and KaiC proteins in the

presence of ATP and Mg2+ exhibits stable oscillations in vitro

between the hypo- and hyper-phosphorylated states of KaiC with

a ,24-h period [2]. Not only does the period of this post-

translational oscillator (PTO) match that exhibited by the clock in

vivo under light/dark conditions, but the PTO is temperature-

compensated, mutagenesis of its constituent proteins in vitro

triggers alterations of the period that are similar to those observed

with mutant strains in vivo [2], and it is able to undergo phase

changes as demonstrated by temperature jumps [3]. Other

rhythms that prevail in S. elongatus include promoter activity and

a daily compaction and expansion of the chromosome that may

play a role in clock-controlled gene expression [4] (Figure 1).

Interestingly, the timing of cell division that occurs every 10.5 h is

controlled by the circadian oscillator, but the behavior of the latter

is unaffected by division, as indicated by identical phases of the

clocks in parent and offspring cells [5]. Similarly, various levels of

KaiC expression as a result of exposure of S. elongatus cells to

different light/dark cycles leave the PTO invariant, thus providing

evidence that it represents the master timer and that the

transcription-translation feedback loop (TTFL) is under the

control of the PTO [6] (Figure 1).

The protein-protein interactions underlying the PTO are highly

dynamic. Rather than particles composed of Kai proteins that

move in lockstep, the concentrations of the free KaiA, KaiB and

the phosphorylated and non-phosphorylated KaiC proteins as well

as those of their binary and ternary complexes oscillate over the

daily cycle [3,5,7]. KaiC is a homo-hexamer [8–10] that possesses

auto-kinase, auto-phosphatase and ATPase activities [11–14]. At

the beginning of the 24-h period, rapid and repeated action of the

KaiA dimer on the KaiC hexamer increases KaiC’s phosphory-

lation [7]. KaiB is a KaiA antagonist [11,12,15–17] and interacts

with KaiC in the hyperphosphorylated state [3,5,7]. Apart from

dephosphorylation, KaiB binding induces KaiC subunit exchange,

a process that is crucial for maintaining a high-amplitude

oscillation [3,7]. Moreover, KaiB’s role as an antagonist to KaiA
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may involve sequestration of the latter in ternary KaiABC

complexes in which KaiA is unable to act as an enhancer of

KaiC phosphorylation [18,19].

Three-dimensional structures for KaiA [16,20,21–23], KaiB

[20,24–26], and KaiC [10] proteins or individual domains from a

variety of cyanobacterial strains have been available for some time

(reviewed in [27]). KaiC, a Ser-Thr kinase, contains two

phosphorylation sites in the C-terminal (KaiCII) half, and harbors

ATPase activity in the N-terminal (KaiCI) half [28–30].

Phosphorylation of the S431 and T432 side chains in KaiCII

follows a strict order such that a phosphate is first transferred to

T432 and also first removed from T432; with the phosphorylation

order represented by: TSRpTSRpTpSRTpSRTS [31,32].

Recent analyses of the role played by the T426 residue that

engages in a H-bonding interaction with phosphorylated S431

indicate that this threonine needs to be phosphorylatable for the

clock to function properly [33]. Indeed, phosphorylation at T426

was observed in the crystal structures of the KaiC S431A single

and T432E/S431A double mutant proteins [30]. The priority of

T432 in terms of phosphorylation is likely a consequence of this

residue being consistently positioned closer to the c-phosphate of

ATP compared to S431 in crystal structures of KaiC. Similarly,

the persistence of the KaiC TpS band as tracked by gels during the

dephosphorylation phase of the clock, when KaiB is bound to

KaiC, can be rationalized by the more sheltered environment of

S431 and the interactions of its phosphate group with nearby

residues T426 and H429 [30].

How KaiA and KaiB exert their opposite influences over the

KaiC phosphorylation status constitutes a central problem in the

analysis of the KaiABC clock mechanism. While atomic-resolution

structures of binary complexes have remained elusive, we have

used a hybrid structural approach to characterize the interactions

of KaiA and KaiB with KaiC. Combining X-ray crystallographic

[10,23], solution NMR [22] and electron microscopy (EM) data,

we have modeled so-called ‘tethered’ and ‘engaged’ configurations

of the KaiA-KaiC (KaiAC) complex [34]. In our KaiAC models a

flexible linker between the KaiA dimer and the KaiC hexamer is

formed by KaiC residues that are near the C-terminus and form

an S-shaped loop (aa 485–497) in the KaiC crystal structure. In

both the ‘tethered’ and the ‘engaged’ configurations this S-shaped

loop has to unravel and this appears to increase the flexibility of

the six KaiCII domains with respect to each other. As

phosphorylation of the KaiC S431 and T432 residues occurs

across subunit interfaces, increased flexibility would tend to

enhance auto-kinase activity [4,5,27,35]. This is consistent with

the observation that the S-shaped loop is important for locking

KaiC in either the hypo- or the hyper-phosphorylated state [36]

and the earlier observation that a single KaiA dimer is able to

drive KaiC to the hyper-phosphorylated state [37]. With regard to

the KaiB-KaiC (KaiBC) complex, we have established that KaiB

binds to the C-terminal KaiCII ring [26]. In our EM based KaiBC

model, two KaiB dimers occupy opposite rims of the dome-shaped

surface of KaiCII, thereby preventing the ‘engaged’ configuration

of the KaiA dimer and blocking further KaiA action on KaiC.

Our EM-based model differs from a model proposed by others

using small angle X-ray scattering (SAXS) that had a KaiB

tetramer bound to the KaiC hexamer [38]. Another notable

difference between these two KaiBC models concerns the central

Figure 1. In the S. elongatus circadian clock the post-translational oscillator (PTO) is embedded in a transcription-translation feed
loop (TTFL). Key features of the oscillator are: (i) Mediation of global gene expression by rhythmic modulation of promoters including those driving
the cluster of core clock protein genes, kaiA, kaiB and kaiC; (ii) modulation of global promoter activity by rhythmic DNA torsion and/or transcription
factor activity (i.e. RpaA, signaled by the PTO output His kinase SasA); (iii) regulation of DNA topology and transcription factors by rhythmic
phosphorylation and dephosphorylation of the KaiC homo-hexameric protein; (iv) robustness conferred by synchronization of KaiC hexamer status
through monomer exchange in the PTO; (v) modulation of amplitude or phase setting by newly synthesized non-phosphorylated KaiC hexamers or
monomers feeding into pre-existing hexamers; and (vi) a core PTO composed of KaiA, KaiB, KaiC and ATP, whereby KaiC has kinase, phosphatase
(putative conformational changes between the two states are indicated by dark- and light-blue coloring of hexamers), and ATPase activities, KaiA
enhances phosphorylation and KaiB antagonizes KaiA.
doi:10.1371/journal.pone.0023697.g001

Combined SAXS/EM Models of the KaiABC Clock

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23697



channel of the KaiC hexamer. In our EM based model KaiB does

not obscure the channel, whereas in the Akiyama et al. SAXS

model the KaiB tetramer blocks the channel.

To further analyze the protein-protein interactions driving the

S. elongatus circadian PTO, we used SAXS in combination with

EM and X-ray crystallography to establish and confirm models of

the binary KaiAC and KaiBC complexes, the complex between

KaiC and the output His kinase SasA, and the ternary KaiABC

complex. Unlike KaiA and KaiB, which are active during either

the phosphorylation or dephosphorylation phase of the clock cycle,

SasA initially appeared to be constitutively bound to KaiC

(immunoprecipitations based on two time points [39]). However,

subsequent studies established that SasA interacts with KaiC in a

circadian fashion, binding more abundantly during the subjective

night [40]. Together with the transcription factor RpaA, SasA

forms a two-component regulatory system that mediates between

the phosphorylation state of the PTO and global transcription

rhythms [41] (Figure 1). It is known that the N-terminal sensory

domain of SasA (N-SasA) contacts KaiC directly and shares

considerable sequence similarity with KaiB. However, the NMR

solution structure of N-SasA disclosed some important differences

to KaiB. Prior to our current study no details had emerged on the

binding mode of SasA to KaiC or on whether or not KaiB and

SasA compete for the same binding site on KaiC [42]. To enhance

the binding interactions in the complexes we made use of mutant

KaiC proteins such as the T432A/S431A double mutant (KaiC-

aa; with enhanced affinity to KaiA) and the T432E/S431E double

and S431D single mutants (KaiC-ee and KaiC-dT; with enhanced

affinity to KaiB). We have determined the crystal structure of the

KaiC-ee hexamer and identified specific changes at its active site

relative to the wild-type KaiC structure in its hyper-phosphory-

lated state [10] that are indicative of conformational plasticity at

the subunit interface.

Overall, our work establishes the basic interaction motifs

between the Kai proteins in binary and ternary complexes. EM

data is presented indicating that SasA and KaiB compete for the

same binding site on the KaiCII side of KaiC. A combination of

EM and SAXS data is used to model the basic interaction mode

between SasA and KaiC. In addition, a structural model is

presented for the sequestration of KaiA during the cycling

reaction, which has been linked biochemically to the proper

functioning of the PTO.

Results

SAXS Models of Individual S. elongatus Kai Proteins
To establish a baseline for interpretation of SAXS envelopes of

Kai protein complexes, we first examined individual Kai proteins.

The three proteins from S. elongatus were expressed in E. coli either

as GST-fusion proteins (KaiA, KaiB and KaiC; GST tags were

cleaved off for further work) or with a C-terminal (His)6 tag as

previously described [3,10]. SAXS data were collected using

protein solutions in the concentration range of between 0.5 and

2.0 mg/mL on the setup of the DND-CAT synchrotron research

center at sector 5 of the Advanced Photon Source (APS, Argonne

IL) [43]. The three proteins were well behaved and the solutions

were virtually free of aggregation as evidenced by linear Guinier

plots (see Figures S1, S2, S3). Selected parameters such as the

experimental and theoretical RG values are listed in Table 1.

SAXS molecular envelopes were calculated with the programs

DAMMIN and GASBOR [44]; in each case the solution

structures were initially generated using P1 symmetry. Crystal

structures were docked into SAXS envelopes manually and the

initial orientations subsequently optimized by rigid-body refine-

ment using the program CHIMERA [45]. The close correspon-

dence between the SAXS envelopes and crystallographic models

(Figure 2) is borne out by similar values of the experimental RG

and those calculated from crystallographic coordinates (Table 1).

The SAXS results on the individual Kai proteins confirm their

quaternary states in solution (KaiA, dimer; KaiB, tetramer; and

KaiC, hexamer).

The KaiA protein adopts a domain-swapped dimer in the

crystal [23] and the SAXS envelope neatly surrounds the

coordinates of the dimer (Figure 2A). KaiA has an N-terminal,

bacterial receiver-like domain and a C-terminal four-helix bundle

that serves to sustain the dimer. KaiB adopts a thioredoxin-like

fold (but lacks the catalytic cysteines of the thioredoxines) and

consistently forms a dimer of dimers in crystal structures [20,24–

26]. The KaiB SAXS envelope matches the shape of a

crystallographic tetramer, although some extra room remains in

the SAXS envelope, which we postulate is due to the flexible N-

and C-terminal peptide tails which are not fully resolved in the

crystal structures (see refs. [24,26]) (Figure 2B). The formation of

a KaiB tetramer as established by SAXS is consistent with earlier

light scattering data [24], and confirms that the tetramer is the

preferred oligomeric state of KaiB in solution. The SAXS

envelope for KaiC is consistent with the shape of the homo-

hexamer seen in the crystal structure [10]. KaiC resembles a

double doughnut comprised of N-terminal CI and C-terminal CII

rings, with a height and diameter of ca. 100 Å and a subtle

restriction at the waist. The SAXS-based molecular envelope

shows a narrow protrusion on one side (Figure 2C), which we

postulate is generated by the C-terminal peptide tails that emerge

from the dome-shaped surface of the KaiCII ring [34]. No such

tails emerge from the opposite side, the KaiCI side, of the

hexamer. Interestingly, EM reconstructions based on negative

stain EM or cryoEM data at resolutions of around 20 Å lack this

bulge [8,9,34]. The flexible C-terminal tails of KaiC are difficult to

Table 1. Overview of SAXS data for Kai proteins and their binary complexes.

Protein/Complex RG [P(r)] [Å] RG (Guinier)[Å] Model RG (Model) [Å] NSD1)

KaiA 32.4260.03 33.360.2 PDB ID 1R8J [23] 34.0 0.95 (0.03)

KaiB 33.6660.01 30.360.1 PDB ID 2QKE [26] 30.3 0.84 (0.02)

KaiC 46.3660.02 47.460.1 PDB ID 3DVL [30] 42.0 0.66 (0.05)

KaiAC 55.8060.07 59.760.4 KaiC with tethered KaiA [34] 66.1 0.76 (0.03)

KaiBC 46.9060.06 46.260.2 KaiBC EM model [26] 45.4 0.89 (0.01)

KaiC-SasA 49.7060.10 47.760.5 KaiC-SasA model (Fig. S9) 52.6 0.54 (0.02)

1)Normalized spatial discrepancy (standard deviation in parentheses).
doi:10.1371/journal.pone.0023697.t001

Combined SAXS/EM Models of the KaiABC Clock
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resolve by negative stain EM. However after adding KaiA, which

binds to the KaiC C-terminal tails, we observed a clear difference

between class sum images of KaiAC formed with wild-type KaiC

and class sum images of KaiAC formed with C-terminally

truncated KaiC [34]. The observation of a bulge in the KaiC

SAXS envelope for the tails suggests that one may consider SAXS

envelopes to correspond to lower resolution representations of

proteins with amplified representation of flexible regions com-

pared to moderate resolution EM structures. Observation of the

C-terminal peptide bulge in the SAXS envelope provides the

benefit of enabling us to distinguish the CI and CII ends of the

KaiC hexamer.

SAXS Model of the KaiAC Complex
KaiA stimulates KaiC phosphorylation and the KaiCII domains

of KaiC harbor the kinase and phosphatase activities. Mutations of

key KaiC residues, including the phosphorylation residues T432

and S431, cause subtle differences in the active-site geometry,

Figure 2. SAXS envelopes for individual Kai proteins from S. elongatus. (A) Envelope for KaiA with the crystal structure of the dimer (PDB ID
1R8J [23]; http://www.rcsb.org) modeled into it. The views are approximately perpendicular to the molecular dyad (left) and along it (right). Subunits
of the domain-swapped dimer are colored in red and blue. (B) Envelope for KaiB with the crystal structure of the tetramer from Thermosynechococcus
elongatus (PDB ID 2QKE [26]) modeled into it. The views are approximately along the dyad relating dimers (left) and perpendicular to it (right). (C)
Envelope for KaiC hexamer (KaiC-aa mutant) with the crystal structure of wt-KaiC (PDB ID 3DVL [30]) modeled into it. The views are approximately
perpendicular to the molecular sixfold rotation axis (left) and along it (right). The conformations of C-terminal tails depicted in the model are based
on the one fully traced tail of subunit A in the crystal structure of wild type KaiC from S. elongatus refined to 2.85 Å [34]. Only two of the chains could
be completely traced up to the C-terminal residue S519, and the conformations of individual tails are affected by the packing of hexamers in the
crystal. ATP molecules are shown in space filling mode. The orientations of the crystallographic models inside the individual SAXS envelopes were
optimized by rigid body refinement. The symbols indicate rotations of 90 degrees.
doi:10.1371/journal.pone.0023697.g002

Combined SAXS/EM Models of the KaiABC Clock
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affect the clock period, or abolish rhythmicity [28,30,33].

Although KaiA is able to bind both hypo- and hyper-phosphor-

ylated forms of KaiC [7], we reasoned that the KaiAC interaction

might be enhanced with mutant forms of KaiC. Various single and

double mutants of KaiC were evaluated. The KaiC T432A/

S431A double mutant (KaiC-aa) seems to enhance the formation

of a stable KaiAC complex. We relied on native polyacrylamide

gel electrophoresis (PAGE) to assay binding between KaiA and

KaiC [34], establish optimal conditions for formation of the

complex, and minimize the presence of the free proteins in the

SAXS samples. Representative scattering curves and the corre-

sponding Guinier plots for the KaiAC complex are depicted in

Figure S4. The calculated envelope displays a protrusion at one

end of the KaiC barrel that is consistent with binding of a single

KaiA dimer (Figure 3). The protrusion is assigned to the KaiCII

end because an NMR structure showed conclusively that the KaiA

dimer binds to the C-terminal peptide tail of KaiC [22]. The

earlier KaiAC EM reconstruction supported the idea of multiple

orientations of the KaiA dimer relative to the KaiC hexamer [34].

The KaiAC SAXS envelope more closely resembles the so-called

‘tethered’ EM model of the complex between KaiA and KaiC.

The SAXS envelope represents a time averaged form of the

complex, and therefore we deduce that the predominant position

for KaiA in the KaiAC complex resembles the ‘tethered’ form with

KaiA ,35 Å from the KaiC hexameric barrel. Both the EM

structure and SAXS envelope of KaiAC are consistent with a

somewhat flexible linker between the two proteins and a

predominant stoichiometry with one dimer of KaiA bound to

one hexamer of KaiC.

Crystal Structure of the KaiC T432E/S431E Mutant and
Conformational Plasticity of KaiC

Various mutants, including the KaiC T432E/S431E double

mutant (KaiC-ee) have been designed to mimic the hyper-

phosphorylated state of KaiC [6,46]. Glutamate or asparate

substitution of phosphorylation sites is a common approach to

emulate the phosphorylated state of a protein. Glu, in particular, is

spatially similar to both phosphorylated Thr and Ser, however Glu

and Asp only contribute a single negative charge instead of the two

negative charges of a phosphate group. To gain insight into the

active site properties of the KaiC-ee mutant we determined its

crystal structure at 3.0 Å resolution. A summary of data collection

and refinement parameters is given in Table S1 and an example

of the quality of the final electron density is depicted in Figure S5.

Analysis of the region around the two introduced glutamates

reveals several important changes compared to wt-KaiC. First, in

the wt-KaiC structure both S431 and T432 are engaged in close

contact with R393 from the same subunit [4,30], but neither E431

nor E432 are close to R393 in the KaiC-ee structure. Secondly,

instead of phosphorylated T432 residues stitching together

adjacent subunits by forming a salt bridge to R385 as observed

in the crystal structure of wt-KaiC [28], the side chains of E432

residues have shifted away from this arginine (Figure 4A).

Notably the distances between all pairs of side chain oxygen and

nitrogen atoms from E432 and R385, respectively, exceed 5 Å in

the six subunits of KaiC-ee. Instead E432 side chains lean over

toward three serine and threonine residues, S379, S381 and T415,

in the adjacent subunit. In all subunits at least three hydrogen

bonds are established between the carboxylate moiety of E432 and

the Oc oxygen atoms of these three amino acids. It is unclear

whether these newly formed interactions provide more stability

than the salt bridges across subunits in the wt-structure. What is

clear, however, is that E432 does not completely mimic pT432. In

the wt-KaiC structure distances between phosphate oxygens of

phosphorylated T432 residues and side chain oxygens of S379,

S381 and T415 residues exceed 4 Å in all six subunits. In contrast,

the side chain of the adjacent residue E431 does not fundamentally

alter its orientation relative to pS431 in the wt-structure.

Carboxylate moieties of E431 side chains engage in hydrogen

bonds to the main chain nitrogen and/or the side chain Oc of

T426 from the same subunit.

Surprisingly, inspection of the electron density maps of the

KaiC-ee mutant revealed that residues S320 in the A and F

subunits carry a phosphate group (Figures 4A, S5A). If we

envision the key components of the KaiC kinase active site,

Figure 3. KaiAC complex by SAXS. The complex was formed with S. elongatus KaiA and the KaiC-aa mutant. The shape of the protrusion above
the KaiC barrel (magenta) is indicative of a single KaiA dimer (subunits colored in red and blue), bound to a KaiCII C-terminal peptide. The position of
the KaiA dimer at some distance from the KaiCII surface is reminiscent of the ‘tethered’ model of the complex determined by EM [34]. The symbol
indicates a rotation of 90 degrees.
doi:10.1371/journal.pone.0023697.g003

Combined SAXS/EM Models of the KaiABC Clock
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(ATP)Pc, (T432)Ca and (S431)Ca, as located near the center of a

sphere with a radius of ca. 12 Å, then S320 and T426 would

occupy approximately the North and South poles, respectively

(Figure 4A). In wt-KaiC it is important to note that the

phosphorylation sites T432, S431 and T426 are all phosphorylat-

ed by active site residues on the adjacent subunit. In KaiC-ee S320

is phosphorylated by active site residues on the same subunit. In

other words, phosphorylation of S320 does not proceed across the

subunit interface but constitutes an intra-subunit process. The

distance between Oc of S320 and Pc is closer in the A and F

subunits of KaiC-ee than the average distance between Oc of

T426 and Pc in the wt-structure (Table 2). This slight

rearrangement in the KaiC-ee structure favors phosphorylation

of the alternate S320 site. SDS-PAGE analysis of the KaiC-ee

double-mutant and T426A/SA431E/T432E triple-mutant (KaiC-

aee) proteins incubated with c-32P-ATP shows weak residual

phosphorylation that cannot occur at any of the three normal

phosphorylation sites (Figure 4B). Clearly replacement of T426

by Ala and both S431 and T432 by Glu does not completely block

phosphorylation at alternative sites. In fact, the gel assay also

provides clear evidence that the triple alanine mutant of KaiC

(T426A/S431A/T432A = KaiC-aaa) also exhibits phosphoryla-

tion. These results indicate that KaiC is a more promiscuous

kinase than hitherto assumed. While gel-based assays can detect

phosphorylation, crystallographic analyses or other high resolution

biophysical studies are necessary to reveal the identity of

alternative phosphorylation sites.

The KaiC-ee mutant was designed to mimic a permanently

phosphorylated form of KaiC that is unable to oscillate between

the hypo- and hyper-phosphorylated states. However, the

conformational changes observed in the structure of KaiC-ee

and the presence of an additional phosphorylation site have to be

Figure 4. Crystal structure of the S. elongatus KaiC-ee mutant and KaiC conformational plasticity. (A) The crystal structure of KaiC-ee
reveals phosphorylation at S320 in the A and F subunits. The figure depicts a portion of the interface between the A (carbons green) and B (carbons
gray) subunits and intra-subunit phosphorylation at S320[A] (top). Carbon atoms of E432[B] and E431[B] are highlighted in cyan (center) and
hydrogen bonding interactions between E432[B] and S379[A], S381[A] and T415[A] (on the right) and between E431[B] and T426[B] (bottom) are
shown as thin solid lines. The gamma phosphate (Pc) of the ATP molecule bound between the A and B subunits is shown, as well as the distance
(12.7 Å) between it and the phosphate of S320. (B) In vitro phosphorylation patterns of wt-KaiC (T426/S431/T432 = TST), and the KaiC-aaa (T426A/
S431A/T432A), KaiC-aee (T426A/S431E/T432E) and KaiC-ee (T426/S431E/T432E) mutants. All mutants exhibit phosphorylation in the 32P assay (albeit
at a much lower level than the wt protein), consistent with a new phosphorylation site outside the known triad T432, S431 and T426. (C) Calculated
electrostatic surface potentials for KaiC (hypo-phosphorylated), KaiC-ee and P-KaiC (hyper-phosphorylated) (from top to bottom) with the hexamers
viewed from their C-terminal ends. Markedly different polarizations might well contribute to KaiB’s ability to distinguish between the hypo- and
hyper-phosphorylated states and preferentially bind the hyper-phosphorylated state.
doi:10.1371/journal.pone.0023697.g004

Combined SAXS/EM Models of the KaiABC Clock
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taken into account when interpreting functional observations of

this mutant. While initial reports suggested that constitutive

phosphorylation of KaiC allowed rhythmicity to proceed in vivo

[46], it was subsequently found that cells expressing KaiC-ee

exhibited a long period that was severely damped. Also these

rhythms were not compensated for by changes in metabolic

activity [6]. In fact, the period measured using luminescence assays

in vivo (60 h) exceeds the published in vitro number (47 h) [46].

Therefore, the latest results indicate that the KaiC-ee mutant has a

severely distorted in vivo rhythm [6] (Figure S6). In vivo assays of

the mimic of the phosphorylated form at the third site, T426E,

show complete loss of rhythm. This further supports the idea that

the phosphorylation state of KaiC is in a delicate balance that can

easily be tipped in one direction or another.

Despite the noted structural variations, the KaiC-ee mutant is

clearly of use in biophysical studies and the changes in the overall

structures between wt-KaiC and various phosphorylation mutants

observed in the solid state (this work and [30]) and in solution [47]

are not dramatic. The KaiC-aa and KaiC-ee mutant proteins that

we used in investigations of the binary KaiAC, KaiBC and KaiC-

SasA complexes display similar small angle X-ray scattering curves

and radii of gyration (Table 1). However, the presence or absence

of phosphorylation is accompanied by a striking change in the

electrostatic surface potential (ESP) on KaiCII that is the site for

KaiB binding [26]. That the change is so large is mainly a

consequence of the fact that the phosphorylation sites are all

situated relatively close to the KaiCII surface. The calculated ESPs

for the hypo-phosphorylated form of KaiC (PDB ID 3DVL,

computationally modified to have no phosphorylated residues),

KaiC-ee (this work), and the hyper-phosphorylated form of KaiC

(P-KaiC; PDB 3DVL, computationally modified to have twelve

phosphorylated residues) are depicted in Figure 4C. The absence

and presence of phosphorylation can be expected to affect the

conformation of the KaiC structure; however there is also an

obvious change from blue (positive) to red (negative) when

comparing hypo- and hyper-phosphorylated forms of KaiC. This

electrostatic charge difference provides a possible rationalization

for KaiB’s ability to select between the two forms of KaiC and

preferably bind the hyper-phosphorylated form of KaiC.

SAXS Model of the KaiBC Complex
We used native PAGE to determine the optimal conditions for

formation of the complex between S. elongatus KaiB and KaiC

[26]. The KaiC-ee mutant was used in an attempt to stabilize the

interactions between the two proteins. Various concentrations of

the complex were screened to avoid aggregation in the SAXS

experiments. Representative examples of scattering curves, P(r)

function and Guinier plots are depicted in Figure 5A, and

relevant parameters are listed in Table 1. Envelopes generated

with the program GASBOR [44] reveal a barrel-like shape with a

bulge of density along the channel axis on one side of KaiC

(Figure 5B), as observed for KaiC alone (Figure 2C). This

allows us to differentiate between the CI and CII halves of the

KaiC hexamer since only the CII half has protruding C-terminal

peptide tails. The SAXS KaiBC envelope also indicates

additional mass on the KaiCII side which we assign to KaiB.

Modeling indicates that the additional mass is not very consistent

with either a single KaiB tetramer or a pair of tetramers.

However, when the earlier EM model of KaiBC with two KaiB

dimers [26] is superimposed onto the SAXS envelope, both KaiB

dimers are surrounded by SAXS density. Thus, we interpret our

SAXS data on KaiBC as consistent with our previously published

EM-based model with two KaiB dimers bound to the CII side of

KaiC (Figure 5B).

In addition to our EM-based model of the KaiBC complex [26],

a SAXS-based model of the complex had been reported by others

[38]. The quaternary arrangements of the two models differ in

that the Akiyama model has a KaiB tetramer modeled into the

SAXS envelope such that the central channel of KaiC is covered.

However, our combined EM and SAXS interpretation of the

KaiBC complex is that two KaiB dimers bind to the KaiCII ring

such that the central channel remains open (Figure 5).

Complementarity of EM and SAXS Data for KaiAC and
KaiBC

We have produced EM-based models for the binary complexes

of KaiAC [34] and KaiBC [26]. The SAXS data presented here

for KaiAC and KaiBC is in agreement with the EM-based models

and provides additional information regarding the conformation-

ally flexible regions of these complexes. The SAXS envelope for

KaiAC supports the concept that the ‘‘tethered’’ state of a KaiA

dimer bound to the flexible C-terminal tails of KaiC is the

predominant state of the complex in solution. Modeling of the

crystal structures of KaiA and KaiC into the SAXS envelope of

KaiAC indicates that the distance between KaiA and KaiC barrel

is approximately 35 Å, as was previously observed by EM. The

SAXS envelope can also be considered consistent with a small

percentage of the ‘‘engaged’’ state of KaiA, in which the KaiA

dimer interacts directly with the KaiC hexameric barrel.

The KaiBC SAXS envelope shows a subtle bulge of density for

the KaiC C-terminal tails on one side of the KaiC hexamer, as is

also observed in the SAXS envelope for KaiC alone. No density

was observed for the flexible KaiC C-terminal tails in the EM

reconstruction. Observation of the KaiC C-terminal tail bulge in

the KaiBC SAXS envelope confirms that KaiB binds to the

KaiCII side of the KaiC hexamer. We had already come to this

conclusion from a combination of moderate resolution EM data

and a thorough gel analysis; however the SAXS envelope shows

directly that KaiB binds to the KaiCII side of KaiC. The EM

structure of KaiBC clearly indicates binding of two KaiB dimers to

the KaiC hexamer. Although the KaiBC stoichiometry is not

immediately obvious from the KaiBC SAXS envelope alone, the

EM-based model with two KaiB dimers is consistent with the

SAXS data. Once the flexible C-terminal tails of KaiC are

considered, the KaiBC SAXS envelope can no longer be held to

be consistent with a tetramer of KaiB binding to KaiC, as

previously thought [38].

Table 2. Distance1) relationships in the crystal structure of
KaiC-ee.

Subunit d(E432) d(431) d(S320)

A 6.75 10.03 13.25 (12.76; P)2)

B 6.60 9.97 12.32

C 7.06 9.76 12.84

D 6.65 9.50 13.19

E 6.82 9.74 12.76

F 6.98 9.75 13.14 (12.14; P)2)

Average 6.81 9.79 12.923)

1)d in Å between Pc (ATP) and Cd of E432 or E431 or Oc of S320.
2)S320 in subunits A and F exhibits phosphorylation.
3)For comparison, the avg. distance to T426 Oc is 12.5 Å.
doi:10.1371/journal.pone.0023697.t002
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Insight into the Ternary KaiABC Complex
KaiA is a two-domain protein with a dimerized C-terminal

four-helix bundle domain (C-KaiA [21–23]) and an N-terminal

domain (N-KaiA) that adopts the fold of a canonical response

regulator receiver domain [16] (Figure S7A). N-KaiA’s primary

sequence differs from that of receivers, and is devoid of the

conserved Asp that is required for phosphorylation. It is

acknowledged that C-KaiA alone is sufficient to enhance the

autokinase activity of KaiC in vitro [16] and this is by C-KaiA’s

interaction with the extended C-terminal KaiC peptides [22,34]

(Figure 3). Curiously, it was found that KaiA produces a

bandshift with a KaiBC complex in which KaiC lacked the C-

terminal peptides [19]. Although full-length KaiA and KaiB were

not found to interact with each other by native PAGE assays [26],

a site-directed spin labeling electron spin resonance analysis

revealed a direct, albeit transient interaction between KaiA and

KaiB [48]. All of this evidence suggests that KaiA may have a

second interaction mode with the KaiBC complex that is distinct

from C-KaiA’s interaction with the C-terminal KaiC peptides.

No detailed model of the ternary KaiABC complex has been

reported to date. Sorting of negative-stain EM images of Kai

complexes formed during the in vitro cycling reaction revealed a

large complex, presumably the ternary KaiABC complex, which

appears similar to the KaiBC complex but with one or two

additional lobes of density protruding from the side of the complex

(see Figure 1D, class IV in [3]). We hypothesized that the

additional side lobes might represent KaiA interacting with the

KaiBC complex in its second interaction mode. To test this

hypothesis we set up two parallel in vitro cycling experiments, one

with the normal level of KaiA (16) and the other with four times

the normal level of KaiA (46). Negative-stain electron micro-

graphs were collected of Kai complexes formed during each

cycling reaction. Class average images indicate that in the

presence of 46 KaiA there are noticeably more side lobes of

density (Figure 6A). This supports the idea that the side lobes are

KaiA. We also calculated a three-dimensional reconstruction of

the class IV complexes from the normal 16 cycling reaction,

which displays a prominent KaiA side lobe (Figure 6B). The

KaiA side lobe density is significantly weaker than that of the KaiC

hexamer, indicating a high level of flexibility and making it

difficult to recognize any distinctive molecular features of KaiA.

Unlike in the binary KaiAC complex where KaiA ‘floats’ above

the KaiCII ring of the KaiC hexamer [34] (Figure 3), in the

ternary complex KaiA appears to be constrained to the side of the

KaiBC complex.

When considering how KaiA might interact with KaiBC it is

important to note that our EM data [26] and SAXS data

(Figure 5B) indicate that KaiB interacts with KaiC as a dimer. It

is possible that the KaiA binding site on KaiB is obscured in the

KaiB tetramer that is normally present in solution (Figure 2B),

and that the ‘‘second mode’’ KaiA binding site only becomes

available when KaiB dimers are bound to KaiC. Alternatively, the

KaiB-KaiC interaction may alter the conformation of the KaiCII

subunits and expose a new KaiA binding site on KaiC. A third

possibility is that the KaiA second mode binding is at a composite

site formed at the interface between KaiB and KaiC. To

investigate the nature of the KaiA second mode interaction, we

conducted native PAGE bandshift assays with N-KaiA and KaiBC

complex. These experiments provide support for an interaction

between the N-terminal KaiA domain and the binary complex of

KaiB and KaiC (Figure 6C).

Only a high-resolution structure will ultimately allow insight

into the details of the interaction between N-KaiA and KaiBC.

However, now that we know that KaiA’s interaction with the

KaiBC complex is via N-KaiA this opens up the possibility that a

monomer of KaiA, and not a dimer, might be involved in the

second mode interaction (Figure 6D). Furthermore, we postulate

that KaiB’s antagonism of KaiA action might involve splitting of

KaiA dimers, followed by docking of N-KaiA in a ternary complex

with KaiBC. This would sequester C-KaiA domains away from

the C-terminal tails of KaiC and also prevent KaiA from binding

other KaiC hexamers and enhancing their phosphorylation.

A Three-Dimensional Model of the SasA-KaiC Complex
The His kinase SasA participates in the clock output pathway

and teams up with other factors such as RpaA, LabA and CikA to

form a relay between the phosphorylation status of the PTO and

the global control of transcription [41,49] (Figure 1). Although

SasA was initially reported to bind constitutively to KaiC [39],

later studies found that KaiC does not just interact rhythmically

with KaiA and KaiB but also with SasA [40]. A three-dimensional

model of the complex between SasA and KaiC (SasA-KaiC) has

remained elusive up to this point. SasA constitutes an EnvZ-like,

class I His kinase [39,50] and exists primarily as a dimer. The

binding interaction between SasA and KaiC involves the N-

terminal sensory domain (residues 1–97) of SasA (N-SasA) [39].

The sequence identity and similarity between KaiB and N-SasA

are approximately 26% and 60%, respectively. It has been noted

that their structures have an overall similarity, but they do exhibit

distinct features [42] (Figure S7B,C). In the same work, it was

suggested but not proven that SasA and KaiB might compete for a

similar binding site on KaiC.

Binding between SasA and either KaiC-ee or KaiC-aa was

established by native PAGE (Figure S8). Complex formation was

observed with both KaiC mutants, which were designed as mimics

of the hyper- and hypo-phosphorylated states, respectively. SAXS

experiments were conducted with the SasA:KaiC-ee complex and

representative experimental data are shown in Figure 7A. The

envelope generated with the program GASBOR [44] for SasA-

KaiC reveals a mushroom-like protrusion along the sixfold axis of

the KaiC hexamer (Figure 7B). There is no bulge for the KaiC

C-terminal tails on the opposite end of the hexamer, suggesting

that SasA binds to the KaiCII side of KaiC, as does KaiB. The

KaiC C-terminal tails presumably are present, along with SasA,

within the mushroom-like protrusion. The suggestion of SasA

binding to the KaiC CII domain is supported by an EM

competition experiment between SasA and KaiB for binding to

KaiC (Figure 8), together with our previous experimental data

showing binding of KaiB to the CII domain [26].

Figure 5. KaiBC complex by SAXS. (A) Experimental scattering curves, pairwise function P(r) and Guinier plots (inset) for the KaiBC complex from
S. elongatus (KaiC-ee mutant). Scattering curves: red with error bars = high concentration, 1.72 mg/mL; green with error bars = low concentration,
1.0 mg/mL; magenta line = FT of P(r) from GNOM [60]. The cyan curve corresponds to P(r) from GNOM. Inset: red with error bars = high conc.; green
with error bars = low conc.; brown line = Guinier fit of data between the red bars (0.6/RG to 1.0/RG). (B) The SAXS envelope for KaiBC with an EM-based
model for KaiBC [26] viewed in three different orientations. The model shows KaiC (magenta and cyan) with two KaiB dimers (green) bound on the CII
side. ATP molecules are shown in space filling mode. To model the complete set of KaiC C-terminal peptides emerging from the CII of KaiC, sixfold
rotational symmetry was applied to residues 499–519 from subunit A in the wt-KaiC crystal structure [34]. In the panel on the left, fogging was used
to obscure the back of the model. The symbols indicate rotations of 90 degrees (left) and 45 degrees (right).
doi:10.1371/journal.pone.0023697.g005
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Negative stain EM studies were performed with the SasA:KaiC-

aa complex. A set of ,3,000 particle images were classified by the

EMAN algorithm refine2d.py to generate 50 classes [51].

Approximately half of the class average images show additional

density assigned to SasA at one end of the KaiC hexameric barrel

(Figure 7C). The additional SasA density includes a well resolved

third layer on top the KaiC barrel, similar to that observed for

KaiB in the KaiBC complex [26], as well as weaker density in

variable positions over the triple-layer structure. We interpret the

third well-resolved layer of density as corresponding to the SasA

N-terminal sensory domain, which is known to bind KaiC, and the

additional blurred density as corresponding to the SasA dimer-

ization/H-box and catalytic domains. A three-dimensional

reconstruction of SasA:KaiC-aa at ,23 Å resolution was gener-

ated with the EMAN refine command (Figure 7D). The EM

structure of SasA-KaiC shows a recognizable hexameric barrel

shape for KaiC and a third layer of density with two apparent

binding sites for the SasA N-terminal domain on either side of the

KaiC central channel. The shape of the SasA-KaiC EM structure

is reminiscent of that observed for KaiBC with two KaiB dimers

bound to a KaiC hexamer on either side of the central channel

[26]. Essentially no density is observed in the SasA-KaiC EM

structure for the SasA dimerization and catalytic domains, which

presumably correspond to the blurred density in the class average

images.

NMR solution structures for the sensory, dimerization/H-box

and catalytic domains of SasA or close homology models (Figure
S9A–C) were combined to generate a three-dimensional model of

the full-length SasA dimer. The published SAXS model of the

class I PrrB His kinase [52] served as a guide for the overall

domain organization (Figure S9D). The linkers between

individual SasA domains are quite long and can be expected to

lead to a variable overall domain organization. Therefore the

domains within the SasA dimer model were adjusted as rigid

bodies during the fitting within the SAXS and EM envelopes

(Figure 7E).

Combining the model of the full-length SasA dimer with the

SasA-KaiC SAXS envelope and the SasA-KaiC EM structure

enabled us to build a reasonable three-dimensional model for the

complex (Figure 7E). The EM density is consistent with

monomers of the SasA N-terminal domain binding to the KaiC

hexameric barrel on opposite sides of the central channel.

Modeling with the full-length SasA dimer makes it seem unlikely

that the two opposing SasA N-terminal domain binding sites

would be occupied by two domains from the same SasA dimer.

Rather the EM density is more consistent with having the second

N-terminal domain in each of two bound SasA dimers hover near

KaiC but not actually bind to KaiC. These unbound SasA N-

terminal domains could potentially bind to other KaiC hexamers

and lead to chaining of SasA-KaiC complexes. Some aggregation

for the SasA-KaiC sample was observed by SAXS.

The individual SasA domains as docked within the SAXS

envelope of the SasA-KaiC complex were optimized with several

rounds of rigid-body refinement, eventually yielding a good fit

such that the SAXS envelope covers two full-length SasA dimers,

with two of the four N-terminal sensory domains occupying

binding sites on opposite sides of the KaiCII rim. The volume of

the SasA-KaiC SAXS envelope is consistent with binding of two

SasA dimers per KaiC hexamer, although only one SasA dimer is

shown for clarity in Figure 7E. In our SasA-KaiC model the

distal protrusion in the SAXS envelope corresponds to the a-

helical bundles in the central domain that stabilize the SasA dimer.

The somewhat loose fit of the model in the envelope for the distal

protrusion, as well as the corresponding blurred density in the EM

class average images, suggests that the linker between the SasA N-

terminal domain that binds KaiC and the SasA central a-helical

domain must be quite flexible.

Superimposition of the SAXS envelope and EM structure

provided guidance for building a three-dimensional model the

SasA-KaiC complex. This model is intended to show the overall

stoichiometry and placement for domains of SasA and KaiC.

Neither the SAXS envelope nor the moderate resolution EM

structure can provide insight into the orientation of the N-terminal

SasA sensory domain relative to the KaiCII ring. This will require

a higher resolution structural analysis, perhaps with designed

fragments of SasA and KaiC. The individual SasA domains as

docked within the SAXS envelope of the SasA-KaiC complex

were optimized with several rounds of rigid-body refinement,

eventually yielding a good fit such that the SAXS envelope covers

two full-length SasA dimers, with two of the four N-terminal

sensory domains occupying binding sites on opposite sides of the

KaiCII rim.

A Competition Experiment Shows that SasA and KaiB
Bind to the Same Side of KaiC

In order to confirm that SasA and KaiB compete for binding

sites on the same side of the KaiC hexamer an EM-based

competition experiment was performed. Mixtures were formed

with a C-terminally truncated form of KaiC, KaiC-D489 [34],

which is known to form stable complexes with KaiB, together with

wt KaiB and wt SasA. Negative stain electron micrographs were

collected of the mixture. A set of 6,013 particle images were

classified by the EMAN refine2d.py algorithm to generate 25

classes [51] (Figure 8A). The class average images resemble those

of SasA:KaiC-aa (Figure 7C) and include some images of triple

layer complexes resembling KaiBC [26] and some triple layer

complexes with additional weak density hovering over the triple

layer structure. None of the class average images of the KaiC-

D489-KaiB-SasA mixture show a quadruple layer structure. We

also used native PAGE to independently assay KaiB-KaiC

(Figure 8B) and SasA-KaiC binding (Figure 8C) and a potential

competition between SasA and KaiB for binding to KaiC

(Figure 8D). We carried out two different experiments. In the

first, increasing amounts of KaiB were added to mixtures of SasA

and KaiC, and in the second, increasing amounts of SasA were

added to mixtures of KaiB and KaiC, and the resulting complexes

Figure 6. EM model of the ternary KaiABC complex. (A) Negative-stain electron micrographs of the KaiBC complex in the absence of KaiA (06,
top [26]), and in the presence of stoichiometric levels of KaiA (16, middle) and with 46the normal concentration of KaiA (bottom). (B) Calculated EM
density of the ternary KaiABC complex viewed from the side (left) and along the central channel of the KaiC hexamer (right). The scale bar represents
50 Å. (C) Native PAGE assay of complex formation between KaiB-DKaiC and N-KaiA. The KaiB/DKaiC band is marked with ‘‘**’’ and is shifted down
slightly compared to the KaiB band. The N-KaiA/KaiB/DKaiC band is marked with ‘‘***’’ and is shifted up slightly compared to the KaiB band. (D) Model
of the KaiABC complex with the flipper-like protrusion, containing the KaiA monomer’s N- (cyan) and C-terminal (blue) domains, and viewed from the
side (left) and along the central channel in the KaiC hexamer (right). KaiB dimers and KaiC hexamer are colored green and magenta, respectively. The
C-terminally truncated form of KaiC (DKaiC) is shown. Note the striking resemblance to the EM density in panel B. At the current resolution it is
impossible to determine whether N-KaiA engages in an interaction with the KaiB dimer, or with KaiC, or both KaiB and KaiC at their binding interface.
The symbols indicate rotations of 90 degrees.
doi:10.1371/journal.pone.0023697.g006
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analyzed. While KaiB is unable to displace SasA from KaiC

(Figure 8D, left panel), SasA infiltrates the KaiB-KaiC complex,

initially resulting in formation of a ternary complex (Figure 8D,

right panel). Upon addition of further SasA, the protein

completely displaces KaiB under formation of the binary SasA-

KaiC complex. Thus, the native PAGE experiments demonstrate

that: (i) Neither KaiB nor SasA binds to KaiCI (Figure 8B), (ii)

the two proteins competitively bind to the same KaiCII region,

and (iii) binding between SasA and KaiC is considerably more

tight than binding between KaiB and KaiC. Overall, SAXS, EM,

Figure 7. SasA-KaiC complex by SAXS and EM. (A) Scattering curves I(q), pairwise function P(r) and Guinier plots (inset) for the SasA-KaiC
complex (KaiC-ee mutant). Scattering curves: red with error bars = high concentration, 1.71 mg/mL; green with error bars = low concentration,
0.85 mg/mL; magenta = FT of GNOM scan P(r). The cyan curve corresponds to P(r) from GNOM [60]. Inset: red with error bars = high conc.; green with
error bars = low conc.; brown line = Guinier fit of data between the red bars (0.5/RG to 1.2/RG). (B) SAXS envelope for the SasA-KaiC complex. (C) EM
class average images for the SasA-KaiC complex (KaiC-aa mutant); red arrows point to extensive density above a third layer. (D) Calculated EM density
for the SasA-KaiC complex viewed from the side, tilted by 45 degrees to show the CII half with the two N-SasA domains bound on either side of the
rim, and along the central KaiC channel (left to right). The EM density reveals the location of the N-SasA domain bound to KaiC (the third layer in the
images depicted in panel C). The scale bar represents 50 Å. (E) Three-dimensional model of the SasA-KaiC complex with superimposed SAXS
envelope (gray) and EM reconstruction (cyan). Only one SasA dimer (red/yellow) is shown for clarity. The symbol indicates a rotation of 45 degrees
(panel D) and 90 degrees (panel E).
doi:10.1371/journal.pone.0023697.g007

Figure 8. SasA and KaiB compete for the same binding site on KaiC. (A) Negative stain electron micrographs of mixtures of SasA, KaiB and
C-terminally truncated KaiC (DKaiC); red arrows indicate the location of bound SasA. (B) Native bandshift gel assay for the formation of the binary
complex between KaiB and KaiC. Note that neither KaiB nor SasA binds to the KaiCI hexamer (rightmost lanes). Arrows indicate the positions of KaiB,
KaiC, KaiBC and KaiCI. (C) Native bandshift gel assay for the formation of the binary complex between SasA and KaiC. Arrows indicate the positions of
SasA and SasA-KaiC complex. (D) Competitive binding by SasA and KaiB to KaiC assayed by native PAGE. When increasing amounts of KaiB are added
to a pre-existing binary SasA-KaiC complex (gel image on the left), KaiB appears unable to displace SasA. Conversely, when increasing amounts of
SasA are added to a pre-existing binary KaiB-KaiC complex (gel image on the right), SasA infiltrates the complex and a band for the ternary complex
appears (marked by an asterisk). Upon further increasing the SasA concentration, KaiB is completely displaced, resulting in the formation of the binary
SasA-KaiC complex (compare boxed lanes in panel D to those boxed in panel C). Not only do KaiB and SasA interact with the same KaiCII regions, but
binding between SasA and KaiC is considerably more tight than binding between KaiB and KaiC.
doi:10.1371/journal.pone.0023697.g008

Combined SAXS/EM Models of the KaiABC Clock

PLoS ONE | www.plosone.org 13 August 2011 | Volume 6 | Issue 8 | e23697



and gel analyses all indicate that SasA and KaiB compete for

overlapping binding sites on the KaiCII side of KaiC. Further

support for this conclusion is provided by the earlier observation of

abnormally dominant complex forms of KaiC in kaiB-inactivated

S. elongatus strains that co-fractionate with SasA [40].

Discussion

The discovery that the S. elongatus oscillator can be assembled in

vitro from three proteins in the presence of ATP [2] had to fill

anybody studying molecular clocks with a renewed sense of awe of

nature’s ingenuity. To biochemists and biophysicists this three-

component PTO offers a multitude of challenges, ranging from

cooperativity among KaiC subunits and ATPase energy transfer to

reaction mechanisms and the molecular origins of temperature

compensation. Many efforts have been directed at the core protein

KaiC and its kinase, phosphatase and ATPase activities (reviewed

in [4,5,53]). However, just as mechanical clocks need an

escapement in addition to the main spring and gear train, the

cyanobacterial clock doesn’t tick with KaiC alone. Therefore,

understanding how KaiA and KaiB proteins interact with KaiC to

drive the oscillator and maintain a period of close to 24 hours is of

fundamental importance.

We previously employed negative-stain and cryoEM to gain

insight into the protein-protein interactions in the binary KaiAC

[34] and KaiBC complexes [26]. Here, we have used a

combination of SAXS, EM, X-ray crystallography and PAGE to

further characterize these two complexes, shed light on the

interaction between KaiC and the His kinase SasA that

participates in the clock output pathway, and produce the first

three-dimensional model of the ternary KaiABC complex. In spite

of the different sample environments, the new SAXS and earlier

negative stain EM envelopes of the KaiAC complex are quite

similar and indicate the same stoichiometry, namely binding of a

single KaiA dimer to a KaiC hexamer. The SAXS envelope of

KaiAC reveals a predominant orientation of the KaiA dimer

relative to the KaiCII surface that is consistent with the so-called

‘tethered’ form of the complex based on EM [34]. In the ‘tethered’

form KaiA resides at some distance (,35 Å) from CII, and is

tethered to the hexameric barrel via a C-terminal KaiC peptide

[22] (Figure 3). Besides the tethered arrangement, the EM

density was also indicative of a configuration in which KaiA and

KaiC are more tightly spaced (the so-called ‘engaged’ form of the

complex [34]). In this state, the C-terminal domain of a KaiA

monomer may contact a secondary binding site on KaiC that

includes the ATP binding cleft between subunits, thus potentially

prolonging the ATP residence time [34].

We show that the quaternary structures of the individual Kai

proteins in solution as determined by SAXS match those in the

solid (crystalline) state - KaiA dimer, KaiB tetramer and KaiC

hexamer (Figure 2). In the SAXS analysis of KaiC alone, C-

terminal peptides (residues 489–519) from the six subunits give rise

to a dome-shaped density on the KaiCII side (Figure 2C). A

similar feature is also present in the KaiBC complex. This SAXS

result confirms the idea that KaiB binds to the CII side of KaiC. In

our analysis after docking KaiC the remaining density in the

SAXS envelope of the KaiBC complex is best modeled as two

KaiB dimers (Figure 5B), rather than one or two KaiB tetramers.

A KaiB tetramer lying down on the KaiCII dome would act as a

lid for the central channel, and this is inconsistent with EM images

of the complex that reveal a central opening [26]. Also, neither the

earlier EM data [26] nor the SAXS envelope of the KaiBC

complex provide support for a binding mode with a portion of one

or two KaiB tetramers extending beyond the edge of the KaiCII

ring. Our EM-based model for the KaiBC complex [26], with two

KaiB dimers bound to the KaiC hexamer, agrees well with the

KaiBC SAXS data.

The change in quaternary structure for KaiB upon binding to

KaiC is unanticipated, and earlier considerations of the role

played by the particular charge distribution in the KaiB tetramer

in terms of the interaction with KaiC and as a promoter of

dephosphorylation [24,25] require revision. This is because the

inter-dimer interfaces of the KaiB tetramer now have to be taken

into account as well when considering the possible makeup of the

KaiB-KaiCII binding interface. The SAXS and EM envelopes at

the current resolutions are not sufficient to settle the orientation of

the KaiB dimer, but there are two additional sources of

information that should be helpful in this regard. First, it has

been established that the KaiB C-terminal tail, rich in acidic

residues, is important for function [25]. Therefore, we would

expect the tail to be directed toward KaiC where it may help drive

subunits apart and interfere with binding of ATP, the only other

molecular entity in the region that features a similarly negative

charge as the KaiB tail. Secondly, the ESP of the dome-shaped

CII end of KaiC is positively polarized in the hypo-phosphorylated

(T432/S431 = TS) state. The transition to the hyper-phosphory-

lated state goes along with the appearance of more negatively

polarized patches (Figure 4C). This likely constitutes the signal

for KaiB binding and its ESP can be expected to be

complementary to that of KaiCII in the pTpS phosphorylation

state. In the subsequent TpS state in which T432 has been

dephosphorylated, KaiC exhibits a slightly expanded conforma-

tion [47] compared to the compact pTpS state seen in the crystal

structure [10]. If KaiB inserts its C-terminal tail between two

subunits the ATP binding cleft may open up, thus further

loosening the association between them and prying the monomers

apart and initiating monomer exchange. It is reassuring in terms of

the three-dimensional structure of the KaiBC complex that both

EM and SAXS are consistent with a model involving binding of

two KaiB molecules to KaiCII (Figure 5B).

Our combined SAXS- and EM-based model of the SasA-KaiC

binary complex reveals binding of two N-terminal sensory

domains of the His kinase along the rim region of KaiCII, in a

similar spot to that occupied by KaiB (Figures 7D,E and 8). The

two molecules (SasA and KaiB) appear to compete for a similar

binding site on KaiC, consistent with their shared ability to sense

the phosphorylation status of the latter. It has been noted that

KaiB and SasA display common features as far as their ESPs are

concerned [42]. We can envision KaiB binding on one side of the

KaiCII rim and SasA occupying the other side, while KaiA

remains attached to a C-terminal KaiC peptide, in line with the

binding of SasA to KaiC over the entire 24-hour period of the S.

elongatus PTO [39]. A clear difference between SasA and KaiB

binding is that SasA probes the KaiC phosphorylation status using

a monomeric sensor. There is presently no evidence, despite

similar folds of KaiB and N-SasA (Figures S7B and S7C,

respectively) that would suggest that KaiB binds as a monomer. A

further difference between the two proteins relates to the C-

terminal region; SasA lacks the C-terminal tail rich in acidic

residues that is a hallmark of KaiBs from a host of cyanobacterial

strains including S. elongatus. Instead the C-terminal extension of

the SasA sensory domain serves as a linker to the dimerization

motif.

That the PTO lies at the heart of the S. elongatus circadian clock

is underscored by the aberrant behavior of the KaiC-ee double

mutant that was used to mimic the hyper-phosphorylated state ([6]

and cited refs.). The crystal structure of KaiC-ee reveals a new

phosphorylation site at S320 and an altered environment of E432

Combined SAXS/EM Models of the KaiABC Clock
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compared to pT432 in the crystal structure of wt-KaiC

(Figure 4A). In the wild type structure a salt bridge between

phosphothreonine and R385 across the subunit interface is likely

of importance for the tight association of KaiCII domains from the

six subunits in the pTpS state. By comparison in the KaiC-ee

structure, E432 undergoes a shift and the carboxylate moiety is

cradled by two serines (S379 and S381) and a threonine (T415)

from the adjacent subunit. R385 is nearby but the distance

between the Ne atoms of R385 and the carboxylate oxygens of

E432 exceeds 5 Å in all cases. In the KaiCI half, the residues

corresponding to E432 (wt T432) and E431 (wt S431) are E198

and E197 and T79 takes the place of S320 in KaiCII (Figure
S10). KaiCI shows ATPase activity but lacks the kinase and

phosphatase activities harbored by the CII half. Although the

distance between T79 and the c-phosphate of ATP in KaiCI is

similar to the corresponding distance for S320 in KaiCII (12.35 vs.

12.41 Å, respectively; A subunit, S/T Ca), T79 is clearly not

phosphorylated in any of the six subunits. This absence of the

phosphotransfer in the CI half reflects subtle differences between

the CI and CII subunit interfaces, as well as the CI and CII

domain sequences, conformations and dynamics. What we learn

from the KaiC-ee structure is that mutations that are intended to

mimic a particular native state (hyper-phosphorylated; pTpS) can

affect structure and activity in unexpected ways. In this case, the

different charges and chemistries of the glutamate and phospho-

threonine side chains lead to a new phosphorylation site

(Figure 4A,B).

Our gel analysis with N-KaiA, KaiB, and C-terminal truncated

KaiC, KaiC-D489, indicates a new interaction between the N-

terminal KaiA domain and either one or both of the other Kai

proteins in the ternary KaiABC complex (Figure 6). The EM

structure of the KaiABC complex is consistent with binding of

KaiA to the KaiBC complex and with KaiA jutting out from the

side of KaiBC. Although the EM study was performed with wild

type KaiC, the gel analysis indicates that the C-terminal tails of

KaiC are not necessary for this new interaction with KaiA. The

binding geometry we propose for the KaiABC complex

(Figure 6D) suggests that perhaps KaiA is no longer holding on

to a KaiC C-terminal peptide. Rather N-KaiA is bound to KaiBC

via a new, as yet uncharacterized, interaction site. In terms of

function, KaiB may influence the action of KaiA by preventing

KaiA from adopting the ‘engaged’ configuration as we proposed

before [26]. In addition, KaiB may effectively sequester KaiA in

this new binding configuration and therefore disable it from

contacting other KaiC molecules and boosting their phosphory-

lation [18,19].

Our analysis of the protein-protein interactions in the S. elongatus

core circadian oscillator using a hybrid structural approach reveals

a more dynamic interplay of the KaiA, KaiB and KaiC proteins

than was hitherto anticipated (Figure 9). Earlier research had

uncovered subunit exchange between KaiC hexamers during the

dephosphorylation phase of the clock cycle and linked this

behavior to maintenance of a robust amplitude by the cyano-

bacterial timer [3,7]. We now demonstrate that KaiA and KaiB

also undergo changes in their quaternary structure over the daily

period. KaiB is known to form a tetramer in the solid state and in

solution, but our new SAXS data confirm that it binds to KaiC in

a dimeric form. KaiA binds the C-terminal tail of a KaiC subunit

above the dimer interface of its C-terminal domains to increase

KaiC phosphorylation during the first half of the clock cycle. KaiB

Figure 9. Schematic illustration of PTO composition, protein-protein interactions and changes in the quaternary structures of Kai
proteins in the cyanobacterial oscillator over a single 24-h period. Binding of a KaiA dimer via its C-terminal domains causes a change in the
KaiCII hexamer from the hypo- to the hyper-phosphorylated state, eventually triggering binding of a KaiB tetramer in the form of two separate dimers
on either side of the KaiCII ring. KaiB binding is accompanied by KaiC subunit exchange and SasA dimer interacts with the PTO in a circadian fashion
and competes with KaiB for binding to KaiC. Formation of the KaiBC complex results in release of the KaiA dimer from the C-terminal KaiCII tail and
subsequently in reattachment via its N-terminal domain, leading to KaiA sequestration in a stable ternary KaiABC complex at the final stage of the
clock cycle.
doi:10.1371/journal.pone.0023697.g009

Combined SAXS/EM Models of the KaiABC Clock

PLoS ONE | www.plosone.org 15 August 2011 | Volume 6 | Issue 8 | e23697



associates with KaiC once the hyper-phosphorylated stage is

reached, thus triggering KaiC subunit exchange and dissociation

of the bound KaiA dimer. KaiA then reattaches itself to the

KaiBC complex, but unlike during the initial phase of the clock

cycle, binding now involves the N-terminal KaiA domain

(Figure 6C,D).

To the best of our knowledge, this work represents the first

example of an extensive SAXS and EM comparative structural

analysis of a protein complex, SasA-KaiC. This study supports the

concept that hybrid methods, including X-ray crystallography,

high-field NMR, SAXS and EM can provide complementary

information for challenging and conformationally flexible macro-

molecular assemblies. Future work will be directed at higher

resolution dissection of the protein-protein interactions in the

KaiABC clock and its output pathway using cryoEM and X-ray

crystallography. Without such high-resolution information a

proper understanding of the mechanisms by which KaiA and

KaiB modulate KaiC’s kinase and phosphatase activities and

readout will remain obscure.

Materials and Methods

Enzyme expression and purification
The S. elongatus GST-KaiA, GST-KaiB and GST-KaiC fusion

proteins were expressed in E. coli [BL21, DE cell line (Invitrogen)]

and purified as described in [3,29]. The S. elongatus KaiC protein

with a C-terminal (His)6-tag was produced in E. coli as previously

described [8,10] and purified by affinity and gel filtration

chromatography. Site-directed mutagenesis (S431A/T432A =

KaiC-aa, T426A/S431A/T432A = KaiC-aaa, T426A/S431E/

T432E = KaiC-aee, S431E/T432E = KaiC-ee, S431D-KaiC, and

E318A-KaiC) was performed with the QuikChangeH XL site-

directed mutagenesis system (Stratagene, La Jolla, CA) and all

mutant proteins were expressed as GST-fusions following the

protocol used with wt-KaiC. Mutant proteins were purified by

metal affinity chromatography (TALON IMAC resin, BD Biosci-

ences Clontech) and then by gel filtration chromatography

(Sephacryl S-300 HR resin, Amersham Biosciences). All proteins

were analyzed by tryptic digestion followed by MALDI-TOF mass

spectrometry. The solution of the purified KaiC-ee mutant protein

was concentrated to ca. 10 mg/mL and ATP in the buffer was

replaced with ATPcS by ultrafiltration for crystallization.

X-ray crystallography
Crystals of the KaiC-ee mutant protein were grown under

conditions similar to those established earlier for wt-KaiC from S.

elongatus [10]. Following mounting in a nylon loop and cryo-

protection in 25% glycerol, diffraction data were collected on the

21-ID-F beamline of the Life Sciences Collaborative Access Team

at the Advanced Photon Source (APS; Argonne National

Laboratory, Argonne, IL) using a wavelength of 1.000 Å. Data

were integrated and scaled with HKL2000 [54] and the initial

orientation of KaiC was established by molecular replacement

with the program CNS [55], using as the search model the wt-

structure (PDB ID 3DVL [30] minus water and Mg2+ and with

residues pS431 and pT432 mutated to alanine). Rigid body

refinement was followed by cycles of positional refinement with

CNS. Manual rebuilding was performed with the programs

TURBO [56] and COOT [57]. Side chains of residues 431 and

432 were added and their conformations gradually adjusted in the

six subunits, followed by further rounds of positional and isotropic

B-factor refinement and addition of solvent molecules. Selected

crystal data, data collection and refinement parameters are

summarized in Table S1. Illustrations were generated with the

program CHIMERA [45].

Gel electrophoresis
Native PAGE was carried out on a PhastSystem (Pharmacia

LKB) using PhastGel Gradient 4–15% or 8–25% gels and

PhastGel Native Buffer Strips (Amersham Biosciences). The gels

were stained with 0.1% PhastGel Blue R solution in 10% acetic

acid and 30% methanol and destained with 30% methanol and

10% Acetic acid. SDS-PAGE was performed using the mini-gel

system from Bio-Rad and ready-made 10% Tris gels (Bio-Rad).

Bio-Safe Coomassie G250 solution was used for staining.

In vivo rhythm experiments
A luciferase reporter strain was made by introducing a gene

fusion kaiBCp::luxAB into the neutral site (NS) I of S. elongatus

PCC 7942, in which the expression of the Vibrio harveyi luciferase

structure genes luxAB is driven by the promoter of the KaiBC

genes. Mutation of KaiC at 426, 431, and 432 was performed by

site-directed mutagenesis, and the clock-controlled rhythms in wild

type or mutant strains were monitored by real-time measurement

of luminescence as described previously [33].

32P-labeled KaiC phosphorylation in vitro
In vitro phosphorylation of KaiC proteins by using [c-32P]ATP

was performed as described previously [33]. Briefly, purified

proteins (200 ng/mL) of wild-type KaiC (TST) or mutant KaiCs

(aaa or aee) were incubated either at 4 or 30uC in 20 mM Tris-

HCl, 150 mM NaCl, 5 mM MgCl2, 0.5 mM EDTA, 1 mM non-

radioactive ATP and 0.4 mCi/mL [c-32P]ATP. At each time point,

10 ml aliquots were removed, mixed with10 mL of 26SDS-PAGE

loading buffer, and stored at 220uC. After heating at 100uC for

10 min, the samples were processed for SDS-PAGE and

autoradiography.

SAXS data collection, processing and model building
All small angle X-ray scattering data were collected on the

SAXS/WAXS setup located at the 5-ID-D beamline of the DND-

CAT synchrotron research center, Advanced Photon Source,

Argonne National Laboratory (Argonne, IL). 1.2398 Å radiation

was selected from the APS Undulator A spectrum using a Si-111

monochromator, with harmonic rejection provided by a 1:1

horizontally focusing mirror, and collimated to 0.360.3 mm with

a series of polished slits. The SAXS detector was a Mar-USA

162 mm CCD and covered the momentum transfer range

0.005,q,0.20 Å21, where q = 4p sinh/l (2h is the scattering

angle). The WAXS detector was a custom Roper CCD and

covered 0.19,q,1.8 Å21. Optimal conditions for the various

binary complexes were established using native PAGE and all

solutions were assessed with light scattering. Scattering curves for

KaiA, KaiB, KaiC and the three binary complexes at three

concentrations as well as all individual buffer solutions were

recorded at 10 or 20uC. After averaging and normalization by the

sample concentration (protein concentrations were between 0.5

and 2.0 mg/mL), scattering due to the buffer alone was subtracted

and the data condensed and noise removed [58]. Data in the low-

and high-angle ranges were merged and cropped to various ranges

of q. The innermost portions of the scattering curves were used for

fitting to the equation I(q) = I(0) exp(24p2RG
2q2/3), where I(0) is

the forward scattering intensity at q = 0 and RG is the radius of

gyration [59]. Values for RG were extracted from the Guinier plot

log{I(q)} vs. q2 or the pair distribution function P(r) using the

GNOM package [60].
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Ab initio envelope calculations
Molecular envelopes were calculated with the programs

DAMMIN and GASBOR along with the averaging package

DAMAVER [44,61], using the SIBYLS SAXS ATSAS program

(http://bl1231.als.lbl.gov/saxs_protocols/saxs_programs.php [62]).

Twenty averaged ab initio models were calculated and scored before

selecting the most typical one. No symmetry restraints were applied

in any of the shape reconstructions. The resulting NSD values

(Table 1) revealed a good similarity in shape for models of Kai

proteins alone and the binary KaiC complexes, representative

examples of which are depicted in the various figures. Three-

dimensional structures of full-length proteins based on crystal

structures (KaiA, KaiB and KaiC) or domains based on solution

NMR (SasA) were built into the SAXS envelopes manually and

optimized via rigid body refinement in some cases using CHIMERA

[45].

Electron microscopy and image processing
Complexes between KaiC-aa and SasA were confirmed by

native PAGE prior to performing negative stain EM analysis.

Protein was diluted to give good individual particle dispersion of

the complex on glow discharged solid carbon supports on

400 mesh Cu foils. Uranyl formate at a concentration of 0.75%

was used as the contrast agent. Micrographs were collected on a

FEI Tecnai T12 microscope operating at 120 kV with a

magnification of 68,0006 and a defocus range between 21 and

21.5 mm on a Gatan US1000 2k62k CCD camera. Digital

micrographs were binned by a factor of 2 prior to image

processing. A total of 2,955 particles were selected with the

EMAN Boxer routine [51]. Principal component analysis and

classification with EMAN Refine2d.py resulted in 50 class average

images. Orientational parameters were determined and a three-

dimensional image reconstruction was calculated using C1

symmetry with the EMAN Refine routine. The final reconstruc-

tion was generated from 2,786 particle images and has an

estimated resolution of 23.5 Å at the Fourier Shell Correlation

(FSC) 0.5 threshold.

The EM reconstruction of KaiABC is based on the meta class

IV images selected from a negative stain EM dataset of complexes

imaged during the in vitro oscillation cycle described in [3]. The full

data set contained 69,749 particle images classified with EMAN

Regine2d.py into 1750 class sum images and then meta-sorted into

meta classes I–IV. The resolution of the KaiABC reconstruction is

,30 Å.

Crystallographic coordinates
Final coordinates and structure factors for the crystallographic

model of the S. elongatus KaiC-ee mutant protein have been

deposited in the Protein Data Bank (http://www.rcsb.org): PDB

ID code 3S1A.

Supporting Information

Figure S1 Scattering curves I(q), pairwise function P(r) and

Guinier plots (inset) for S. elongatus KaiA. Scattering curves: red

with error bars (from GNOM) = high concentration, 2.1 mg/mL;

green with error bars (from GNOM) = low concentration,

0.85 mg/mL; magenta line = FT of GNOM scan P(r). The cyan

curve corresponds to P(r) from GNOM (Svergiun, 1992). Inset: red

with error bars = high conc., 2.1 mg/mL; blue with error

bars = medium conc., 1.5 mg/mL; green with error bars = low

conc., 0.85 mg/mL; brown line = Guinier fit of data between the

red bars (0.4/RG to 1.2/RG).

(TIF)

Figure S2 Scattering curve I(q), pairwise function P(r) and

Guinier plot (inset) for S. elongatus KaiB. Scattering curve: red

with error bars, concentration 1 mg/mL; magenta line = FT of

GNOM scan P(r). The cyan curve corresponds to P(r) from

GNOM (Svergun, 1992). Inset: red with error bars = conc. 1 mg/

mL; brown line = Guinier fit of data between the red bars (0.7/RG

to 1.2/RG).

(TIF)

Figure S3 Scattering curves I(q), pairwise function P(r) and

Guinier plots (inset) for S. elongatus KaiC. Scattering curves: red

with error bars (from GNOM) = high concentration, 0.95 mg/mL;

blue with error bars (from GNOM) = medium concentration,

0.80 mg/mL; green with error bars (from GNOM) = low

concentration, 0.66 mg/mL; magenta line = FT of GNOM scan

P(r). The cyan curve corresponds to P(r) based on the medium

concentration from GNOM (Svergun, 1992). Inset: red with error

bars = high conc., 0.95 mg/mL; blue with error bars = medium

conc., 0.80 mg/mL; green with error bars = low conc., 0.66 mg/

mL; brown line = Guinier fit of data between the red bars (0.5/RG

to 1.2/RG).

(TIF)

Figure S4 Scattering curves I(q), pairwise function P(r) and

Guinier plots (inset) for the S. elongatus KaiAC complex (KaiC-aa

mutant). Scattering curves: red with error bars = high concentra-

tion, 2.1 mg/mL; blue with error bars = medium concentration,

1.6 mg/mL; green with error bars = low concentration, 1.1 mg/

mL; magenta line = FT of GNOM med conc. P(r). The cyan curve

corresponds to P(r) from GNOM (Svergun, 1992). Inset: red with

error bars = high conc. (2.1 mg/mL); blue with error bars = me-

dium conc. (1.6 mg/mL); green with error bars = low conc.,

1.1 mg/mL; brown line = Guinier fit of data between the red bars

(0.4/RG to 0.9/RG).

(TIF)

Figure S5 Quality of the final crystallographic model for the

KaiC-ee mutant. Fourier sum (2Fo-Fc) density contoured at the

1s level around (A) residue pS320 in the F subunit (phospho-

serine; upper right), and (B) around E431 (lower right) and E432

(upper right) in the A subunit.

(TIF)

Figure S6 Effect of Glu substitution of KaiC P-sites on the

PkaiBC-driven rhythm. Following a dark synchronization, lumi-

nescence was measured in reporter strains expressing either wt-

KaiC (KaiCWT) or the KaiC-ee and T426E mutants

(KaiCS431E/T432E and KaiCT426E, respectively).

(TIF)

Figure S7 Comparisons between the three-dimensional folds (N-

terminus blue to C-terminus red) of (A) N-KaiA [S. elongatus;

PDB 1R8J; X-ray (Ye et al., 2004)], (B) KaiB [T. elongatus; PDB

ID 2QKE; X-ray (Pattanayek et al., 2008)], and (C) N-SasA (S.

elongatus; PDB ID 14TY; NMR (Vakonakis et al., 2004)].

(TIF)

Figure S8 Native PAGE assays for complex formation between

either KaiC-ee (left) or KaiC-aa (right) and full-length SasA.

(TIF)

Figure S9 Three-dimensional structures and models of His

kinase domains. (A) N-terminal sensory domain of S. elongatus

SasA [PDB ID 1T4Y; NMR (Vakonakis et al. 2004)], (B)

dimerization domain harboring the His phosphorylation site of

E. coli EnvZ [PDB ID 1JOY; NMR (Tomomori et al., 1999)], and

(C) the catalytic domain of E. coli EnvZ with bound ADP[PDB ID

1BXD; NMR (Tanaka et al., 1998)]. (D) Model of the full-length
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SasA dimer, viewed perpendicularly to the molecular dyad, and

rotated by 90u and viewed along the molecular dyad. Linker

regions are highlighted in black.

(TIF)

Figure S10 Sequence alignment and secondary structures of S.

elongatus KaiCI (upper line) and KaiCII (lower line).

(TIF)

Table S1 Selected crystal data, X-ray data collection and

refinement parameters for the crystal structure of S. elongatus

KaiC-eea.

(DOCX)
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55. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998)

Crystallography and NMR System: a new software suite for macromolecular

structure determination. Acta Crystallogr D 54: 905–921.

56. Cambillau C, Roussel A (1997) Turbo Frodo, Version OpenGL.1, Université
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