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ABSTRACT

Substitution of oxygen atoms by sulfur at various
locations in the nucleic acid framework has led
to analogs such as the DNA phosphorothioates and
40-thio RNA. The phosphorothioates are excellent
mimics of DNA, exhibit increased resistance to nucle-
ase degradation compared with the natural counter-
part, and have been widely used as first-generation
antisensenucleicacidanalogsforapplications invitro
and in vivo. The 40-thio RNA analog exhibits signific-
antly enhanced RNA affinity compared with RNA, and
shows potential for incorporation into siRNAs. 2-
Thiouridine (s2U) and 5-methyl-2-thiouridine
(m5s2U) are natural nucleotide analogs. s2U in tRNA
confers greater specificity of codon–anticodon inter-
actions by discriminating more strongly between
A and G compared with U. 2-Thio modification preor-
ganizes the ribose and 20-deoxyribose sugars for
a C30-endo conformation, and stabilizes heterodu-
plexes composed of modified DNA and complement-
ary RNA. Combination of the 2-thio and sugar
20-O-modifications has been demonstrated to boost
both thermodynamic stability and nuclease resist-
ance. Using the 20-O-[2-(methoxy)ethyl]-2-thiothymi-
dine (m5s2Umoe) analog, we have investigated the
consequences of the replacement of the 2-oxygen
by sulfur for base-pair geometry and duplex
conformation. The crystal structure of the A-form
DNA duplex with sequence GCGTAT*ACGC
(T* = m5s2Umoe) was determined at high resolution
and compared with the structure of the corresponding

duplex withT* = m5Umoe. Notablechangesasaresult
of the incorporation of sulfur concern the base-pair
parameter ‘opening’, an improvement of stacking in
the vicinity of modified nucleotides as measured by
base overlap, and a van der Waals interaction between
sulfur atoms from adjacent m5s2Umoe residues in
the minor groove. The structural data indicate only
minor adjustments in the water structure as a result
of the presence of sulfur. The observed small struc-
tural perturbations combined with the favorable con-
sequences for pairing stability and nuclease
resistance (when combined with 20-O-modification)
render 2-thiouracil-modified RNA a promising
candidate for applications in RNAi.

INTRODUCTION

Chemically modified nucleic acids have been studied extens-
ively in the context of the development of antisense therapeut-
ics (1,2) and more recently in the search for small interfering
RNAs (siRNAs) for in vitro and in vivo applications (3,4). In
both cases, increases in RNA affinity as a result of modifica-
tion can be expected to play an important role in the improve-
ment of the efficacy of putative oligonucleotide therapeutics
(5). Phosphorothioate DNA (PS-DNA) (6) has undergone
extensive tests in numerous clinical trials of antisense oligo-
nucleotides (7). In PS-DNA, one of the non-bridging phos-
phate oxygen atoms is replaced by sulfur. Although this
altered chemistry leads to a slight reduction in RNA affinity
relative to DNA, PS-DNA was considered a promising first-
generation antisense modification for a number of reasons,
including ease of synthesis, increased nuclease resistance
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and binding to proteins (biodistribution) as well as degradation
of RNA bound to PS-DNA by RNase H (8). Another sulfur
modification, 2-thiouridine (s2U) was found to strongly
increase the melting temperature (Tm) of heteroduplexes
between modified strands and RNA compared with the
corresponding DNA:RNA hybrids (9). For example, incorp-
oration of a single s2U residue in the center of a nonamer
DNA strand led to an increase of 9.4�C in the Tm for the
duplex with the complementary RNA strand compared with
the unmodified hybrid duplex (10). Consecutive and
interspersed replacement of several thymidines by 20-O-[2-
(methoxy)ethyl]-2-thiothymidine (m5s2Umoe; Figure 1) fur-
nished an average gain in Tm of 3.5 and 3�C, respectively, for
heteroduplexes between modified strands and RNA relative to
the native duplexes (11).

The s2U modification occurs naturally in transfer RNAs
[(12–14); see also the RNA modification database http://
medstat.med.utah.edu/RNAmods/]. The modification is pre-
sent at the first position of the anticodon, position 34, and
affects the relative stabilities of pairing with A and the wobble
pairing with G of codons, thereby stabilizing and increasing
the specificity of codon–anticodon interactions. Because sulfur

has a bigger atomic radius and lower electronegativity than
oxygen, its H-bonding ability is weaker relative to the latter.
As a result, the interaction between the sulfur in the 2-position
of s2U with the hydrogen on N1 of G (Figure 2A, right) is
weakened compared with the corresponding pair between U
and G (Figure 2B, right). On comparison, the hydrogen bond
between N1 of A and N3-H of s2U (Figure 2A, left) is only
indirectly affected, rendering its stability similar to that of
the U:A pair (Figure 2B, left). In summary, in the absence
of the sulfur modification, the more electronegative oxygen in
the 2-position of U will readily form a hydrogen bond with the
hydrogen on N1 of G. This makes the U:G interaction more
similar to the U:A interaction (Figure 2B) compared with the
relative stability of the s2U:G and s2U:A pairs (Figure 2A)
[(15) and cited references]. In addition to conferring pairing
specificity, the s2U modification also restricts uridine
dynamics by locking the nucleoside in the anti, C30-endo
conformation (16,17). Moreover, the conformational effects
of the modification extend into the 30-adjacent nucleosides,
causing them to assume a similar conformation (18,19). The
strong conformational preorganization towards the C30-endo
pucker by the sulfur at the 2-position of the base is consistent
with the aforementioned increased RNA affinity exhibited by
oligonucleotides containing the s2U modification.

To examine the potential conformational changes in a
duplex as a consequence of replacement of T by m5s2U
and to better understand the origins of the enhanced stability
of s2U-modified duplexes compared with their native
counterparts, we determined the X-ray crystal structure of
an A-form DNA decamer duplex with sequence 50-
GCGTA(m5s2Umoe)ACGC and two 20-O-[2-(methoxy)-
ethyl]-2-thiothymidine residues. The structure of the duplex
with the same sequence containing a single 20-O-[2-(methoxy)-
ethyl]-thymidine per strand (50-GCGTA(m5Umoe)ACGC)
had previously been determined at a similar resolution and
was used as the reference (20). The 20-O-MOE RNA analog isFigure 1. Structure of 20-O-[2-(methoxy)ethyl]-2-thiothymidine (s2m5Umoe).

Figure 2. Pairing of U and s2U with A and G. (A) Diagram illustrating s2U base-pairing with both A and G; s2U favors A over G. (B) Diagram illustrating the lack in
specificity with uridine; U binds with similar affinity to both A and G.
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a promising second-generation antisense modification that
leads to significant gains in RNA affinity as well as enhanced
nuclease resistance compared with DNA or PS-DNA (21,22).
The roles of conformational preorganization, stereoelectronic
effects and hydration in the stability increases afforded by the
20-O-MOE modification have been studied extensively using
crystallographic data obtained for partially (20) and all-20-O-
modified duplexes (23).

Here, we show that the presence of sulfur at the 2-position of
T results in subtle changes in the local helical parameters and
goes along with a slight improvement of the stacking inter-
actions with adjacent bases, evident from the comparison of
the orientations of the m5s2U and m5U bases relative to their
nearest neighbors in the m5s2Umoe-modified and reference
duplex, respectively. Overall the structural data are consistent
with the significant gains in thermodynamic stability afforded
by the s2U modification.

MATERIALS AND METHODS

Synthesis of the 2-thio-20-O-MOE-5-methyluridine
modified oligonucleotide

The 50-O-DMT-20-O-MOE-2-thiothymidine-30-phosphor-
amidite was prepared according to the published procedure
(11). The oligonucleotide d(GCGTA)-m5s2Umoe-d(ACGC)
was synthesized on functionalized controlled pore glass
(CPG) on an automated solid phase DNA synthesizer with
final DMT group retained at the 50 end. Standard phosphor-
amidites and solid supports were used for incorporation of A,
T, G and C residues. A 0.1 M solution of the amidites in
anhydrous acetonitrile was used for the synthesis of the modi-
fied oligonucleotide. For incorporation of 2-thio-20-O-MOE-5-
methyl U amidite, 6 equivalents of phosphoramidite solution
were delivered in two portions, each followed by a 5 min
coupling wait time. All other steps in the protocol supplied
by the manufacturer were used without modification. Oxida-
tion of the internucleotide phosphite to the phosphate was
carried out using tert-butyl hydroperoxide/acetonitrile/water
(10:87:3) with 10 min oxidation wait time. The stepwise coup-
ling efficiencies were >97%. After completion of the synthesis,
the solid support was suspended in aqueous ammonium
hydroxide (30 wt%) and kept at room temperature for 2 h.
The solid support was filtered and the filtrate was heated at
55�C for 6 h to complete the removal of all protecting groups.
The crude oligonucleotide was purified by high performance
liquid chromatography (HPLC, C-4 column, Waters,
7.8 · 300 mm, 15 mm, 300 Å, buffer A ¼ 100 mM ammo-
nium acetate, pH 6.5–7, buffer B ¼ acetonitrile, 5–60% of B
in 55 min, flow 2.5 ml min�1, l 260 nm). Detritylation was
achieved by adjusting the pH of the solution to 3.8 with acetic
acid and keeping at room temperature until complete removal
of the trityl group, as monitored by HPLC analysis. The
oligonucleotide was then desalted by HPLC and characterized
by ES-MS (calculated mass: 3118.35 g mol�1; found:
3119.57 g mol�1) and purity (91% full length) was assessed
by capillary gel electrophoresis.

Crystallizations and data collection

Crystallization trials were performed with the Nucleic Acid
Mini-screen (24) by Hampton Research (Aliso Viejo, CA),

using the hanging drop vapor diffusion technique. Droplets
with volume 2 ml of a 1:1 mixture of sample and mini-screen
buffer were equilibrated against 1 ml of 35% 2-methyl-2,4-
pentanediol (MPD). Crystals were obtained from a droplet that
contained 1 mM oligonucleotide, 40 mM sodium cacodylate
pH 7.0, 12 mM spermine tetrahydrochloride, 12 mM sodium
chloride, 80 mM potassium chloride and 10% v/v MPD. A
single crystal was mounted in a nylon loop and frozen in liquid
nitrogen. Diffraction data were collected at low temperature in
a cold nitrogen stream on the 5-ID beamline of the DuPont-
Northwestern-Dow Collaborative Access Team at the
Advanced Photon Source, Argonne, IL. Separate data sets
for high and low resolution reflections were acquired. All
data were processed with the program XDS (25) and a sum-
mary of selected crystal data and data collection statistics is
listed in Table 1.

Crystal structure determination and refinement

Due to the close similarity between two of the unit cell con-
stants, the diffraction data were processed both in the space
groups P222 (orthorhombic) and P422 (tetragonal). The res-
ulting values for R-merge differed only minimally (<1%) and
structure determination was subsequently attempted in
P212121, the space group found for the vast majority of crystals
of A-form DNA 10mers with isolated 20-O-modified residues
investigated in our laboratory (20), and in space group P42212.
Phasing was carried out by the molecular replacement method
using the program AMORE (26) as part of the CCP4 suite of
crystallographic programs (27). An A-form DNA decamer of
the same sequence GCGTATAGCG (28) was used as the
search model. Promising solutions with good R-factors, reas-
onable correlation coefficients, and few short lattice contacts
were found in both space groups. Initial refinements of the
models were performed with the program CNS (29), setting
aside 5% randomly selected reflections for calculating the
R-free (30). While the R-factor calculated for the model in the
orthorhombic space group P212121 dropped rapidly, it failed

Table 1. Selected crystal data, data collection and refinement statistics

Crystal data
Space group P212121

a (Å) 25.25
b (Å) 45.00
c (Å) 44.97

Data collection
Source/detector DND-CAT 5-ID (APS)/MAR225
Temperature (�C) �170
Wavelength (Å) 0.9873
Total no. of reflections 51 837
No. of unique reflections 6304
Resolution range (Å) 32.0–1.61
Completeness, all/1.71–1.61 Å (%) 95.0/88.2
R-merge, all/1.71–1.61 Å (%) 7.1/15.5

Refinement statistics
No. of DNA atoms 460
No. of water molecules 160
R.m.s. distances (Å) 0.01
R.m.s. angles (�) 2.4
Mean B value (overall, Å2) 9.1
R-work 0.195
R-free 0.202
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to drop below 35% in space group P42212. Consequently,
refinement was continued only in P212121. After rigid-body
refinement and simulated annealing plus multiple rounds of
positional and individual B-factor refinement, the complete
model, including the 2-thio and 20-O-MOE modifications
for the two modified residues, exhibited an R-factor of
30.1% (R-free of 28.5%). Refinement was then continued
with the progam REFMAC (31), using a bulk solvent correc-
tion and treating DNA atoms and water molecules with
restraint anisotopic B-factors (32,33). The final model refined
to an R-factor of 19.4%, using all reflections up to a resolution
of 1.61 Å. Selected refinement parameters are listed in Table 1
and an example of the quality of the final Fourier sum (2Fo-Fc)
electron density is depicted in Figure 3.

Coordinates

Final coordinates and structure factors have been deposited in
the Protein Data Bank (http://www.rcsb.com) PDB ID code
2AXB.

RESULTS

Overall structure

Owing to the similar b and c unit cell constants (Table 1),
diffraction data from a single crystal of the m5s2Umoe-modi-
fied DNA decamer were indexed and processed both in ortho-
rhombic and tetragonal space groups. Following structure
determination with molecular replacement using an A-form
model, initial rounds of refinement in the space groups
P212121 and P42212 indicated that the crystal system is ortho-
rhombic. Thus, the crystallographic asymmetric unit consists
of a single duplex and the lattice features a non-
crystallographic 4-fold symmetry. Multiple rounds of coord-
inate and temperature factor refinements and simulated
annealing led to an improved model, and electron density

maps based on it revealed ordered 20-O-MOE substituents
in the minor groove. The positions of sulfur atoms were
marked by spherical peaks of density that are clearly enlarged
relative to those around the exocyclic O4 and O2 atoms of
unmodified thymines (Figure 3). In the duplex, residues of one
strand are numbered from 1 to 10, and those in the comple-
mentary strand are numbered from 11 to 20; m5s2Umoe
residues are located at positions 6 and 16.

The modified duplex adopts an A-form conformation with
an average helical rise of 2.64 Å (SD 0.69 Å) an average
helical twist of 34.3� (SD 3.4�). The average inclination of
base pairs relative to the helical axis is 15.6�. Except for
residues at the 50-terminal ends, the conformations of all sug-
ars fall into the C30-endo range. The deoxyriboses of residues
G1 and C2 adopt C20-exo and C40-exo puckers, respectively,
and G11 is flipped into the C20-endo conformation. Similarly,
most of the backbone torsion angle conformations observed in
the decamer duplex are those typically associated with an
A-form geometry (-sc/ap/sc/sc/ap/-sc; a to z). Exceptions
are constituted by A5 in strand 1 and G13 in strand 2 that
both assume an extended backbone variant with a, b and g in
the ap conformation. The conformation is brought about by a
crankshaft motion of the backbone and is accompanied by
elongated distances between adjacent intra-strand phosphorus
atoms (6.9 Å between A5 and m5s2Umoe6 and 6.4 Å between
G13 and T14; avg P. . .P distance: 6.1 Å).

To analyze the geometry of the m5s2Umoe-modified duplex
further and to determine potential changes as a result of the
presence of sulfur atoms in the central A:m5s2Umoe base
pairs, we used the previously determined structure of the
duplex with identical sequence and m5Umoe residues at posi-
tions 6 and 16 as a reference (20). The resolution of that
structure is similar (1.93 Å) to that of the m5s2Umoe-modified
duplex described here. Both crystals belong to space group
P212121 and have very similar cell constants [a ¼ 24.93,
b ¼ 44.59, c ¼ 45.38 Å (reference) versus a ¼ 25.25,
b ¼ 45.00, c ¼ 44.97 Å]. We will refer to the reference

Figure 3. Example of the final sum (2Fo-Fc) Fourier electron density (1s threshold) around the base-pair step (A5)p(m5s2Umoe6):(A15)p(m5s2Umoe16). The view is
into the minor groove with 20-O-MOE substituents in the foreground (m5s2Umoe6, left, and m5s2Umoe16, right), and atoms are colored green, blue, red, orange and
yellow for carbon, nitrogen, oxygen, phosphorus and sulfur, respectively.
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and the 2-thio-modified duplexes as the m5Umoe and
m5s2Umoe structures, respectively.

Crystal packing effects

Because the conformational perturbations caused by the 2-thio
modification can be expected to be quite subtle, it is important
to identify and quantify conformational differences between
the m5s2Umoe-modified and reference duplexes that are due to
crystal packing effects. Interactions between neighboring
duplexes in the crystal lattices of m5Umoe and m5s2Umoe
decamers involve stacking of terminal base pairs into the
outer portions of the minor groove (34). This particular
mode of interaction triggers various degrees of kinking into
the major groove. Individual crystallization conditions, the
chemistry and spatial properties of substituents of 20-O-
modified residues and their location in the decamer strand,
as well as data collection temperature all appear to play a
role in the relative degree of kinking (35). Superimposition
of the two duplexes reveals that the m5Umoe decamer exhibits
a slightly stronger kink than the m5s2Umoe decamer (Figure 4).

The kink compresses the major groove and occurs between the
tetramer 50-G1pC2pG3pT4 and the hexamer pA5p(m5U-
moe6)pA7pC8pG9pC10. It is accompanied by significant
changes in the local base-pair (stagger), base-pair step (rise,
twist and roll) and base-pair helical parameters (inclination).
The absolute values of these parameters at that site constitute
either the minimum (stagger [m5Umoe], rise, twist) or max-
imum (stagger [m5s2Umoe], roll, inclination) among the indi-
vidual observations with both duplexes. Most probably, these
changes are only weakly affected by the oxygen!sulfur sub-
stitution in residue 16, although the kink occurs between the
T4:A17 and A5:m5s2Umoe16 pairs. Rather, they are a reflec-
tion of the intrinsic conformational properties (‘bendability’)
of the decamer sequence and the packing forces in the ortho-
rhombic crystal lattice. Regarding the possible origins of the
observed difference in kinking in the two duplexes, it is note-
worthy that the m5Umoe structure was determined at room
temperature (20) whereas the m5s2Umoe structure is derived
from diffraction data collected at �170�C. Thus, slightly
divergent packing forces due to the temperature change are
the most likely cause of the observed differences between the
global conformations of the m5s2Umoe and m5Umoe
duplexes. Because of the kink adjacent to the A5:m5s2Umoe16
base pair and the ensuing perturbations in its immediate vicin-
ity, one would expect that careful analysis of the geometry of
the other modified base pair, m5s2Umoe6:A15, might yield a
more reliable estimate of the changes as a result of the 2-thio
modification.

Effects of the 2-thio modification on the
local conformation

Both structures were analyzed with the program 3DNA that
allows calculation of geometric parameters for nucleic acid
molecules (36). Among the parameters, one would expect
those that concern the local geometry of base pairs and the
stacking interactions to be the most informative in terms of
potential conformational changes due to 2-thio modification.
Figure 5 depicts graphic representations of selected geometric
parameters for base pairs in the m5s2Umoe and reference
duplexes. A significant change (11�) is observed in the para-
meter opening for base pair m5s2Umoe6:A15 compared with
the corresponding pair in the reference structure (Figure 5A).
This change in opening results in a larger separation
between the C2 atoms of the two bases in the minor
groove with the 2-thio modified pair [4.23 Å versus 3.89 Å
(ref. structure); Figure 6A]. Comparison of the stretch para-
meters also indicates a small change (0.15 Å; not shown)
for this base pair that is related to accommodating the
larger sulfur atom. Compared with the above change in open-
ing, the differences in the parameters shear, stagger and pro-
peller twist (Figure 5B–D, respectively) are relatively minor
for base pair m5s2Umoe6:A15. Likewise, it does not appear
that buckling of bases is affected by the sulfur substitution.
The calculated values for both the m5s2Umoe6:A15 and the
A5:m5s2Umoe16 pairs differ by <1� from those for the
corresponding pairs in the reference structure. Interestingly,
the latter base pair does not exhibit an altered opening angle
relative to the reference duplex (Figure 5A). The difference
amounts to less, �2� although the separation between
C2 atoms of bases (4.11 Å) is comparable with that seen in

Figure 4. Overall conformation of the m5s2Umoe-modified decamer (atoms
are colored green, blue, red, orange and yellow for carbon, nitrogen, oxygen,
phosphorus and sulfur, respectively) compared with the m5Umoe-modified
reference duplex (thin blue lines). The view of the A-form duplexes is across
the major (top) and minor grooves (bottom) and the 50-terminal G1 and G11
residues are located at the top left and bottom left, respectively. 20-O-Substi-
tuents are jutting into the minor groove and 2-sulfur atoms highlighted in
yellow. The reduced kink into the major groove in the m5s2Umoe-modified
decamer between the tetramer 50-G1pC2pG3pT4:30-C20pG19pC18pA17p and
the hexamer 50-pA5p(m5s2Umoe6)pA7pC8pG9pC10:30-(m5s2Umoe16)-
pA15pT14pG13pC12pG11 is clearly visible.
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the m5s2Umoe6:A15 pair (see above). Similarly, other
parameters, including stretch, shear, stagger and propeller
twist change subtly, but none of them appears to be making
the major contribution such as opening in case of the
m5s2Umoe6:A15 pair (Figure 5). Rather, the combination of
many small changes results in an arrangement that shifts
the sulfur atom away from the C2 atom of adenine in the
minor groove. In any case, a superposition of the
s2m5Umoe6:A15 and A5:s2m5Umoe16 pairs demonstrates
that they adopt relatively similar conformations, with virtually

identical relative orientations of C2(A) and S2(m5s2Umoe)
(Figure 6B).

In order to examine whether presence of the sulfur atoms in
the m5s2Umoe structure led to changes in the stacking inter-
actions involving the four central base pairs, we calculated the
overlap areas between adjacent pairs in Å2 units (36). The
3DNA program allows computation of the surface areas of
polygons projected in the mean plane of a base pair at a
particular step, including exocyclic ring atoms. Stacking inter-
actions at selected base-pair steps are shown in Figure 7.
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Inspection of the plotted diagrams for the m5s2Umoe and
reference duplexes reveals minor alterations in stacking at
most base-pair steps. An exception is found at the
(A5)p(m5s2Umoe6):(A15)p(m5s2Umoe16) step (Figure 7C)
that displays a clearly visible shift between base pairs relative
to the reference structure. Indeed, the calculated y-displace-
ment at that site shows a difference of 2.3 Å between the
m5s2Umoe and m5Umoe structures (1.1 versus �1.2 Å,
respectively; Figure 5E). The difference in x-displacement
is somewhat smaller, �1.3 Å (�5.3 versus �4.0 Å in
m5s2Umoe and m5Umoe, respectively; Figure 5F), but consti-
tutes the largest change for that parameter in the entire duplex.
The two neighboring steps also show considerable changes in
y-displacement that amount to �1.6 Å (Figure 7B) and �1.7 Å
(Figure 7D). At the central step, it is readily apparent that
the two sulfur atoms have moved toward one another. Indeed,
the distance between the sulfur atoms (3.48 Å) is shorter
than the one between the corresponding O2 atoms in
the reference structure (3.73 Å). The former is slightly shorter
than the sum of van der Waals radii for the two sulfur
atoms (3.6 Å). When the overlap areas between adjacent
base pairs at the (T4)p(A5):(m5s2Umoe16)p(A17),
(A5)p(m5s2Umoe6):(A15)p(m5s2Umoe16) and (m5s2Umoe6)
p(A7):(T14)p(A15) steps (Figure 7B–D) are added, a slight
increase in stacking for the m5s2Umoe decamer compared with
the reference structure is apparent (17 Å2 versus 15 Å2). There-
fore, we can conclude that the experimental data regarding
stacking are at least in line with the stabilizing effect of
the 2-thio modification.

Hydration of sulfur atoms and MOE moieties

In the minor groove, sulfur atoms of adjacent m5s2Umoe resi-
dues are bridged by a single water molecule. This water, in
turn, forms a hydrogen bond to the outer oxygen of the 20-O-
MOE substituent of m5s2Umoe16, and a second, relatively
weak hydrogen bond to the 40-oxygen of the same residue.
The 2-sulfur atom of m5s2Umoe6 is hydrogen bonded to a
second water molecule. This water bridges the nucleobase
to a further water molecule that is itself hydrogen bonded
to both O20 and the outer oxygen of the 20-O-MOE substituent
from m5s2Umoe6. Both 20-O-MOE moieties adopt gauche
conformations (m5s2Umoe6, sc+, and m5s2Umoe16, sc�,
Figure 3). In the case of m5s2Umoe6, the substituent is directed
toward the center of the minor groove, allowing for a direct
link between the MOE moiety and the minor groove edge of
the base by a single water molecule. On comparison, the
substituent of m5s2Umoe16 is directed away from the base
edge, therefore requiring a water tandem to link MOE moiety
and S2. Water molecules trapped between the 20- and the outer
oxygen atoms of MOE substituents are connected to phosphate
groups from 30-adjacent residues via single- or double-water
bridges, a particular feature previously observed in the crystal
structures of 20-O-MOE-modified RNAs (20,23) and shared
by other modifications with 20-O-substituents containing
hydrogen-bond acceptors and/or donors (37). The presence
of a stable network of water molecules in the minor groove
that connects m5s2U bases with sugar moieties and phosphate
groups provides an indication that the 2-thio modification does
not significantly alter the water structure compared with uracil.
This observation alone does not allow conclusions as to the
role of hydration in the overall stabilizing effect of the 2-thio
modification. Nevertheless, the absence of obvious disruptions
in the minor groove hydration by sulfur atoms in the
m5s2Umoe duplex structure clearly argues against a destabil-
izing contribution.

DISCUSSION

The primary goal of the present study was an assessment of the
structural perturbations induced by the 2-thio modification in
an A-form duplex environment. The m5s2Umoe nucleoside
does not occur naturally; the choice to focus on this modifica-
tion rather than the natural, biologically active s2U and m5s2U
pyrimidines (13,38) is based on the expectation that the 2-thio
modification alone will most probably not provide sufficient
nuclease resistance for in vivo and cell-based RNAi or anti-
sense applications. A facile synthesis of the m5s2Umoe phos-
phoramidite building block for solid-phase synthesis has been
reported, and, indeed, the combination of the 2-thio and 20-O-
MOE modifications confers increased nuclease resistance
based on in vitro measurements of resistance against snake
venom phosphodiesterase degradation (half-lives of oligos
with m5s2Umoe modifications >24 h) (11).

Replacement of the 2-oxygen of U or T by sulfur was shown
to greatly increase RNA affinity of base-modified oligonuc-
leotides (9–11). The combination of the 2-thio and 20-O-MOE
modifications also resulted in a higher thermodynamic stabil-
ity of duplexes between modified oligonucleotides and com-
plementary DNA (11), albeit to a lesser extent compared with
the corresponding RNAs. One would not expect a modification

A

B

Figure 6. Effects of the 2-thio modification on the geometry of m5s2Umoe:A
base pairs. (A) Superimposition of the m5s2Umoe6:A15 (colored by atom) and
m5Umoe6:A15 (black lines) base pairs, illustrating base opening in the m5s2U-
moe:A base pair. (B) Superimposition of the A5:m5s2Umoe16 (colored by
atom) and m5s2Umoe6:A15 (black lines) base pairs, illustrating the nearly
identical orientations of the C2(A) and S2(m5s2Umoe) atoms in the two pairs.
The views are approximately along the normal to the base planes and Watson–
Crick hydrogen bonds are drawn as thin solid lines.
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that brings about a considerable increase in the stability of
duplexes to significantly alter the geometry of the nucleobase,
sugar or phosphate portions, and/or the local and global con-
formations of a secondary or tertiary nucleic acid structural

motif. This assumption is based on observations from crystal-
lographic data, indicating that stabilizing modifications com-
monly mimic the native conformation, whereas those that lead
to a loss of stability often display significant deviations,

Figure 7. Improvement of stacking interactions as a result of the 2-thio modification. Panels on the left show stacking interactions in the m5s2Umoe-modified duplex
and panels on the right show stacking interactions at the corresponding steps in the m5Umoe-modified reference duplex. Base-pair steps (A) (G3)p(T4):(A17)p(C18),
(B) (T4)p(A5):(m5s2Umoe16)p(A17), (C) (A5)p(m5s2Umoe6):(A15)p(m5s2Umoe16), (D) (m5s2Umoe6)p(A7):(T14)p(A15) and (E) (A7)p(C8):(G13)p(T14). G, C,
A and T are colored green, yellow, red and blue, respectively, and sulfur atoms are highlighted as yellow spheres. The figures were generated with the program
3DNA (36).
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including sterically unfavorable interactions (20,39). Right
from the outset of the work described here, we were aware
that effects triggered by 2-thio modification would be rather
subtle and hence their detection would require relatively pre-
cise structural data. The resolution of the structure of the A-
form decamer duplex with m5s2Umoe modifications, although
not extremely high, should be sufficient to ferret out some of
the consequences of the 2-thio and sugar modifications for
base-pair geometry and duplex conformation. Likewise, avail-
ability of a structure as a reference molecule that differs from
the duplex investigated here only by the absence of the sulfur
atom in the m5Umoe residues renders the analysis more
meaningful as it allows for a separation of various overlaid
effects.

Key features of the m5s2Umoe residues in the crystal struc-
ture of the modified DNA duplex are the C30-endo pucker and
various subtle changes in the base pair, base-pair step and
base-pair helical parameters. In addition, the sulfur atoms
are in van der Waals contact across the minor groove as a
result of y- and x-displacements at the central base-pair step
(Figures 5 and 7C) and, judging from base overlaps in the
vicinity of m5s2Umoe residues, 2-thio modification leads to
small but measurable improvements in the stacking interac-
tions compared with the reference structure. Among the
changes in base-pair geometry, the altered opening between
m5s2Umoe6 and A15 is readily apparent (Figures 5A and
6A). In fact, this is perhaps the most straightforward way to
accommodate the larger sulfur atom opposite the C2–H2 func-
tion of adenine. Increased propeller twist, stagger or shear
relative to a canonical geometry of the native T:A pair in
principle could each be used separately to relieve the steric
challenge posed by the larger sulfur. However, the opening
seen in the m5s2Umoe6:A15 pair is unique in the sense that this
adjustment seems sufficient alone to accommodate the sulfur
atom. In contrast, it appears that, rather than relying on a single
parameter to adjust to the bulkier sulfur, a combination of
adjustments including all of the above parameters is respons-
ible for generating the particular arrangement seen in the
A5:m5s2Umoe16 pair.

Sugar pucker, nucleoside conformation and base-pair geo-
metry are the result of a host of factors, including stereoelec-
tronic effects. However, unlike improvements in stacking or
extensive hydration networks (the structure reveals both), the
structure does not allow any conclusions per se regarding
either a favorable or unfavorable contribution by some of
these factors to the net increase in stability observed with
the m5s2Umoe modification. In other words, although 2-thio
modification will probably cause a stronger preference of the
sugar for the C30-endo pucker, all we see in the structure is the
product of the various stereoelectronic effects that bear on the
conformation and we can only speculate as to the relative
magnitude of the individual contributions toward the net
gain in stability. One of these (hidden) contributions is the
strengthening of the O40–C10–N1 anomeric effect in m5s2U
compared with thymine (see reference (40), pp. 43–46, for a
discussion of the relation between sugar pucker type and
molecular orbital overlap and hyperconjugation). Because
oxygen is a more electronegative element than sulfur, it
may appear counter-intuitive to consider sulfur a better
acceptor of negative charge than oxygen. Indeed, oxygen
has a greater ability to attract electron density per unit surface

area. But if the greater surface area of sulfur compared with
oxygen is taken into account (factor 2.5), and the potentials for
each atom are summed over their respective spherical surfaces,
sulfur may well end up having an equal or greater potential
than oxygen. Another effect that could contribute favorably to
the higher stability afforded by the m5s2Umoe modification is
a change in Watson–Crick hydrogen bonding strength com-
pared with RNA A:U or DNA A:T pairs. The N1. . .N3 hydro-
gen bond between A:U pairs in RNA was recently shown to be
stronger than the corresponding interaction in DNA (41).

With the m5s2Umoe nucleoside, the modulation of stereo-
electronic effects extends into the 20-O-substituent. For
example, the gauche effect between O40 and O20 that drives
the sugar conformational equilibrium toward the C30-endo
side is enhanced by the presence of electronegative atoms
or groups in the substituent, as recently demonstrated by
extensive analyses of the influence of the chemistry of
RNA 20-O-substituents on the stability of duplexes
(37,39,42–44). Combining the 2-thio and 20-O-MOE modifica-
tions generates synergistic stereoelectronic effects that are
absent, e.g. in oligonucleotides modified by 20-O-methyl-2-
thiouridine (10). These additive effects are the basis for the
high RNA affinity and increased nuclease resistance of the
m5s2Umoe modification.

Nature’s use of the s2U and m5s2U pyrimidines (i.e. in
tRNA) is clearly related to the conformational rigidity of
their ribose moiety as a result of the substitution of the 2-
oxygen by sulfur. The influence of the sulfur substitution is
demonstrated by the altered binding affinity and cleavage
activity of RNase H, an enzyme that is exquisitely sensitive
to conformational or steric changes in DNA:RNA substrates
(45). Although the enzyme binds RNA duplexes they are not
recognized as substrates (46), presumably because a canonical
A-form geometry precludes endonucleolytic cleavage of the
RNA strand. Consistent with this observation, incorporation of
m5s2U into the DNA strand of heteroduplexes dramatically
reduced the cleavage rate at ribonucleotides opposite modified
residues (47). Although this puts limitations on the use of this
modification in antisense applications, where RNase H-
mediated degradation of the target mRNA is considered
important for efficacy, the properties of the s2U, m5s2U and
m5s2Umoe modifications may render them of interest for use
in siRNAs. Together with DNA phosphorothioates (8) and
40-thio-RNA (3,48,49), they constitute the third class of
sulfur-modified nucleic acid building blocks with promising
features for the generation of nucleic acid therapeutics.
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