

Crystal Indexing in PROTEUM3

Indexing Screen

- Determine Unit Cell
 - Finding the orientation of the crystal lattice relative to the instrumental setup
- Automatic
 - Can be run from any step
- Manual
 - Collect Data
 - Harvest spots
 - Index
 - Refine
 - Bravais
 - Refine
- Methods
 - Difference vector
 - FFT
 - Least squares (Cell_now)

Determine Unit Cell Collect data

You can collect images for indexing based on preset runs in the bn-config.py file. Since every crystal diffracts differently, you to change critical parameters to match the sample.

- Distance
- Exposure time
- Image width

Standard setting for CMOS and CCD detectors

- Detector Format always 1024x1024
- Correlate Frames always "no" for CMOS
- Runs or scans are defined as angular sweeps in different crystal orientations. They can be setup in the bn-config file or from the *run experiment* menu
 - 2 runs of 3° separated by 90° in reciprocal space
 - Filename_01_0001.sfrm

↑ ↑ Run # Frame #

Г	
Image Location: C:\frames\demo\lysozyme	•
Image Base Name: matrix	
First Run:	
Distance [mm]: 60.00	
Exposure Time: 10.00 🚖 sec/image	
Image Width [deg]: 0.50 🚔	
Detector Format: 1024x1024	
Correlate Frames: no	
Finish	Collect Cancel

Determine Unit Cell Harvest spots

Find reflections for the indexing. Can harvest from anywhere in the run or from more than one run. Can be in different regions of reciprocal space.

- First image can be from anywhere in the data
- Number of runs
 - Will start at the beginning of all runs after run 1
- Go to Image what image to display
- Min I/sigma(I)
 - Signal to noise cutoff for finding reflections
 - Smooth images reduces image resolution
- Smooth images
 - Reduces the resolution of the images which removes weak reflections and combines split reflections
- Excluded Shells
 - Remove resolution shell from harvesting
- Store
 - Stores reflections by color scheme
 - Save only reflections that span images

Determine Unit Cell Navigating through the indexing steps

- Arrows move to the previous or next step
- Finish
 - Runs auto mode from current step
- Harvest
 - Performs function and returns to the main menu
- Cancel returns to the main menu

First Image:	ames\demo\lysozyme\Lyso_080916_01_000)1.sfm
Number of Runs:	Images per Run: 20	
Go to Image:	C:\frames\demo\lysozyme\Lyso_080916_0	1_0001.sfm 💌
	More Spots	Fewer Spots
Min. I/sigma(I):	10.00 Smooth images	1 1 1 1
	From [Â] To [Â]	Add
	0.10 3.0	Edit
	3.2 3.8	Delete
Excluded Shells:		Delete All
Store:	empty	•
	Save only reflections that span images	
	Finish Harvest	Cancel

Determine Unit Cell Indexing

- Reflections shows the number of spots harvested and color code
- Go to Image shows the image displayed
- Min I/sigma(I)
 - Signal to noise cutoff for finding reflections
- Resolution
- Filters
- Corrections
 - Offsets from the frame headers
 - Clicking manual allows them to be edited
- Methods
 - Difference Vector
 - Fast Fourier Transform
 - Least Squares (Cell_now)

Determine Unit Cell Indexing

- Indexing results gives the unit cell found from all methods selected
- You can choose any cell to continue
- HKL histrogram
 - Percentage of harvested reflections that match the predicted spots based on the orientation matrix

RMS angle [°]: n/a Histograms... Transformations...

-

-

Cancel

Fewer Reflections

Determine Unit Cell LS refinement reduced triclinic cell

- Refine the unit cell constants and hardware parameters to improve the orientation matrix
- Makes it easier to search for higher symmetry
- If you only index from a small angular range, the program only allows you to refine the Domain orientation, beam center and crystal to detector distance (DX)

Vinit cell					170	Unit Cell:	a=38.57Å, α=90.08° b=77.33Å, β=90.05°	V=230468Å3	
a [Å]	38.56	±	0.04		160		c=77.26A, γ=89.97		
	77 19	+	0.08				Unit cell		
- 1/1	77.14	-	0.05		150		a [Å]	38.574	± 0.0
C [A]	77.14	Ξ	CU.U				b [A]	77.33	± 0.0 + 0.0
α["]	89.91	±	0.04		40		a [']	90.079	± 0.0
B [°]	89.95	±	0.03		130		β[°]	90.050	± 0.0 + 0.0
- CJ	00.02		0.05				V [Å]	230500	± 30
YLJ	03.32	I	0.00		120		Domain translatio	n 0.00	
V [A ³]	229600	±	600		110	Parametera	v [mm]	0.00	
Domain translation					110	Falameters.	z [mm]	0.00	
Domain translation	0.00			222	100		Domain orientatio	n	
x [mm]	0.00						ω [*] 	-98./	± 0.4
v [mm]	0.00				90			184.4	± 0.4
7 []	0.00						Detector translati	on	
····· z [mm]	0.00				80		distance [mm]	0.02	± 0.0
Operation Operation							x beam [mm]	-0.572	± 0.0
() [°]	.95.2	+	0.7		70		y beam [mm]	-0.455	± 0.0
w [9]	176 765	-	0.7		60			~~	
×[]	1/0./05	-	0.010		50	Reflections:	Group 0: 645	reflections	
φ[]	181.0	±	0.6		50	Calla Image			01 0001
Detector translation					40	do to image.	C. traines (denio (Lysozyn	ie (Lysozyme_	1_0001
distance [mm]	-0.06	±	0.04		30		More	Reflections	F
Beam center					20	Tolerance:	0.16		
x beam [mm]	-0.589	±	0.012		20				
y beam [mm]	-0.482	±	0.004		10		214 Reflections selected	for Refinement	
Detector orientation					•		O Show selected Reflect	tions	
pitch [°]	0.01						Show predicted Reflect	ctions	
roll [°]	0.46				1				
							RMS XY [mm]: n/a	RMS a	ngle [°]:
- Intensity [counts] 68 - HKL index -0.44 14.42 - Resolution [Å] 2.84 - 2Theta [*] 31.46	23.00					Tools:	Refine	Histogram	s T

Determine Unit Cell LS refinement reduced triclinic cell

Tolerance

- How far the position of the observed reflection differs from the predicted
- Moving the slider bar increases the accepted tolerance and add more reflections
- Start with suggested reflection set and then add more as the cell improves
- RMS XY, RMS angle
 - How far off are the predicted spots
 - RMS XY should be < 0.3
 - RMS angle should be < 1 deg

Reflections:	Reflections: Group 0: 645 reflections								
Go to Image:	: C:\frames\demo\Lysozyme\Lysozyme_01_0001.sfm								
Tolerance:	0.16	More Reflec	tions	Fewer Reflections					
	216 Reflections selected for Refinement								
	Show selected Reflections								
	Show predicted Reflections								
	RMS XY [mm]: 0.0	09	RMS angle	[°]: 0.044					
Tools:	Refine	Н	istograms	Transformations					
	Finish		Acce	pt Cancel					

Determine Unit Cell LS refinement reduced triclinic cell

- Histograms
 - Error distribution for all of the reflections
 - Shows how well the • observed spot matches the predicted indices and detector position
 - Can display and remove ٠ reflections by clicking on the error bar

	Reflection	ns: Group 0: 645 reflections
	Go to Imag	nge: C:\frames\demo\Lysozyme\Lysozyme_01_0001.sfm
		More Reflections Fewer Reflections
	Tolerance	e: 0.16
Leviation Histograms	X [mm]	216 Reflections selected for Refinement
		 Show selected Reflections Show predicted Reflections
K	Y [mm]	RMS XY [mm]: 0.009 RMS angle [°]: 0.044
		Refine Histograms Transformations
L 200 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rotation Angle ["]	Finish Cancel
	Gose	

Determine Unit Cell LS refinement reduced triclinic cell

 Transformations 			
 Allows you to transfer orientation matrix 	the	Go to Image:	C:\frames\demo\Lysozyme\Lysozyme_01_0001.sfm
	Image: Second strike Image: Second strike a <> b #1 a <> b #2 a <> b #3 a <> c #1 a <> c #2 a <> c #3 b <> c #1 b <> c #2 b <> c #3 b <> c #1 b <> c #2 b <> c #3 a > 2*a b >> 2*b c >> 2*c <> c 2*a > a 2*b > b 2*c >> c Transformation Matrix: 1 2 3 1 +1.0000000 +0.00000000 +0.00000000 2 +0.00000000 +1.00000000 +0.00000000 3 +0.00000000 +0.00000000 +1.00000000	Tolerance:	More Reflections Fewer Reflections 0.16 I
	Apply Transformation Matrix 1 2 3 1 +0.00192394 +0.01289468 -0.00003455 2 +0.02581651 -0.00095729 +0.00072589 3 +0.00142480 -0.0001615 -0.01291883 a=38.57Å, α=90.08°, V=230524Å ³ -77.34Å, β=90.05° c=77.28Å, γ=89.99° OK Cancel	Tools:	Refine Histograms Transformations Finish Accept Cancel

Determine Unit Cell Bravais search

- Higher symmetry search
- Transforms the reduced triclinic cell into all possible choices
- Rates them on how closely they match the Laue constraints for that point group symmetry and lists the FOM from 0 → 1, the higher value being the better score
- Cells shown in green are those the program thinks are acceptable, red not realistic
- Any cell with a FOM 0.3 or higher is shown in green, anything lower shown in red
- You can select any cell shown and the program will transform the reduce cell to that setting

Initial Unit Cell:

a=38.57Å, α=90.08°, V=230468Å³ b=77.33Å, β=90.05° c=77.26Å, γ=89.97°

Bravais Lattice	FOM	a [Å]	b [Å]	c [Â]	α [°]	β [°]	γ [°]
Cubic F	0.01	115.84	115.86	115.95	96.39	96.29	141.10
Cubic I	0.01	86.44	86.33	109.24	50.80	50.78	78.57
Cubic P	0.01	38.57	77.26	77.33	89.92	89.97	89.95
Hexagonal P	0.01	77.26	77.33	38.57	90.03	89.95	90.08
Rhombohedral R	0.01	86.33	86.40	116.03	116.66	63.38	101.54
Tetragonal I	0.02	109.24	115.95	38.57	70.63	90.01	90.05
Tetragonal P	0.79	77.26	77.33	38.57	89.97	89.95	89.92
Orthorhombic F	0.02	38.57	159.24	159.37	86.58	103.97	103.97
Orthorhombic I	0.02	38.57	109.24	115.95	89.95	70.63	89.99
Orthorhombic C	0.82	109.24	109.39	38.57	90.06	89.99	89.95
Orthorhombic P	0.78	38.57	77.26	77.33	89.92	89.97	89.95
Monoclinic C	0.85	109.39	109.24	38.57	90.01	90.06	90.05
Monoclinic P	0.82	77.26	38.57	77.33	90.03	90.08	89.95
Triclinic P	1.00	38.57	77.26	77.33	89.92	89.97	89.95

-

Determine Unit Cell LS refinement of the final unit cell

- Final step is to refine the cell with the Laue constrains applied
- For the reduced triclinic cell all the cell constants are refined

www.bruker.com

© Copyright Bruker Corporation. All rights reserved