

# Current Trends in Native SAD Phasing





# Different ways of getting phases

- Molecular replacement
  - Uses a similar model to determine the unknown structure
  - Rotation search based on Patterson map, relative orientation of the molecule
  - Translation search in the unit cell
- Anomalous dispersion
  - X-ray data is inherently centrosymmetric, Friedel's law HKL = -H-K-L
  - When you are near the absorption edge of an atom, you get a phase shift
  - Utilize the differences in Friedel's mates to find marker atoms
  - Cobalt anomalous scattering plot

$$f = f_0 + f' + if''$$

$$\int_{0.0e} \int_{0.0e} \int_{0.0$$

# Different ways of getting phases Heavy atom methods



Anomalous dispersion methods

- Multi-wavelength (MAD)
  - Synchrotron data at two or more wavelengths near the absorption edge of an element
- Single-wavelength (SAD)
  - Single wavelength at an element's absorption edge
  - Native SAD
    - Sulfur atoms
    - Naturally occurring metals

#### Native SAD Marker atoms

- F" values for common marker atoms in proteins
- Metals are the best since they typically produce a strong anomalous signal and are tightly bound
- CYS and MET residues provide sulfurs as potential marker atoms but MET have a higher degree of conformation freedom so can be hard to find

|    | CuKα | GaKα |
|----|------|------|
| Ρ  | 0.43 | 0.33 |
| S  | 0.56 | 0.43 |
| Se | 1.15 | 0.88 |
| Mg | 0.18 | 0.15 |
| Ni | 0.53 | 3.29 |
| Zn | 0.68 | 0.53 |
| Ca | 1.3  | 1    |
| Mn | 2.76 | 2.24 |
| Fe | 3.2  | 2.56 |
| Со | 3.65 | 2.92 |
| Cd | 4.66 | 3.67 |





# Experimental phasing

Except in relatively rare cases where atomic resolution data permits the phase problem to be solved by *ab initio* direct methods, experimental phasing usually implies the presence of heavy atoms to provide reference phases. We then calculate the phases  $\phi_{T}$  of the full structure by:

#### $\phi_{\rm T} = \phi_{\rm A} + \alpha$

Where  $\phi_A$  is the calculated phase of the heavy atom substructure.

 $\alpha$  can be estimated from the experimental data.

The phase determination requires the following stages:

- Location of the heavy atoms
- Determine reference phases and phase shift
- Improvement of these phases by density modification



#### Analysis of MAD data

Karle (1980) and Hendrickson, Smith & Sheriff (1985) showed by algebra that the measured intensities in a MAD experiment should be given by:

#### $|\mathsf{F} \pm|^2 = |\mathsf{F}_{\mathsf{T}}|^2 + a|\mathsf{F}_{\mathsf{A}}|^2 + b|\mathsf{F}_{\mathsf{T}}||\mathsf{F}_{\mathsf{A}}|\cos\alpha \pm c|\mathsf{F}_{\mathsf{T}}||\mathsf{F}_{\mathsf{A}}|\sin\alpha$

 $|F_T|$  (native *F* including heavy atoms but ignoring *f'* and *f''* contributions)  $|F_A|$  (heavy atom structure factor)

 $\alpha$  phase shift

where:

a = 
$$(f''^{2}+f'^{2})/f_{0}^{2}$$
,  
b =  $2f'/f_{0}$ ,  
c =  $2f''/f_{0}$  and  
 $\alpha = \phi_{T} - \phi_{A}$ 

a, b and c are different for each wavelength.



## Analysis of MAD data

- Provided that  $|F \pm |^2$  has been measured at two or more wavelengths we can solve the equations for all the variables
- So for MAD (or SIRAS) phasing, all we need to do is to use find the heavy atoms from  $F_A$ , use them to get  $\phi_A$  and then calculate a map with amplitudes  $|F_T|$  and phases

 $\phi_{\rm T} = \phi_{\rm A} + \alpha$ .



#### SAD phasing

The  $|F_T|$  and  $\phi_T = \phi_A + \alpha$  approach used in MAD phasing is so convenient that it is desirable to extend it to SAD

```
For SAD, we can approximate:

|F_T| = (|F+| + |F-|) / 2 and

\alpha = 90^\circ for |F+| > |F-| or

\alpha = 270^\circ for |F+| < |F-|
```

 $|F+| - |F-| \approx c |F_A| \sin \alpha$ , can use  $\Delta F$  values to find HA

The weight (fom) to be assigned to  $\phi_T$  should be large when both the calculated heavy atom structure factor  $|F_H|$  and ||F+| - |F-|| are large, and small when either or both are small

## Native SAD Phasing Experiment



- Number of HA sites
  - Sulfur requires 2-3 sites per 100 residues
  - Heavier atoms require fewer sites
- Data Collection strategies
  - Higher random multiplicity, different crystal orientations
  - Inverse beam using wedges of data
  - Friedel mates on the same image
  - Multi-crystal averaging
- Resolution limit
  - For the substructure solution, 3.5 2.5 Å
  - Interpretable electron density map, > 3.5 Å
- Solvent content
  - SAD phasing is highly dependent on density modification so the higher the solvent content the better

## Native SAD Phasing Will it work?



- Data metrics, correlation coefficients
  - $\Delta F vs \sigma$ , for all the Bijvoet pairs
  - CC (1/2), internal anomalous consistency within a data set
  - Anomalous scattering ratio (R<sub>as</sub>)
    - Comparison of symmetry related centric and acentric reflections
- Data collection
  - Optimize sample prep
  - Select the proper crystal mount
  - Minimize radiation damage
  - Collection strategy
    - Increase multiplicity evenly between I<sup>+</sup> and I<sup>-</sup>
    - Sulfur requires 13 25 fold
    - Heavier atoms 5 15 fold



#### SHELX Suite

SHELX is a set of programs written by George Sheldrick for structure determination and model refinement from single crystal diffraction data

- SHELXC prepare files for phasing with SHELXD/E
- SHELXD determine the heavy atom substructure
- SHELXE density modification and main-chain trace
- XC, XM, XE are the Bruker versions of SHELX

# XC, SHELXC Data analysis



- Creates a file with anomalous coefficients and phase shift
  - Preforms local scaling to help remove systematic errors
  - F<sub>H</sub>, α
- Outputs data metrics
  - Data completeness and  $I/\sigma I$  in resolution bins
  - Signal to noise for anomalous differences,  $\Delta F/\sigma$  (d"/sig)
  - CC for anomalous differences between wavelengths, MAD
  - $CC_{1/2}$  to measure internal consistency within a data set, SAD

#### • Metrics improve as the multiplicity increases

• Example of an cubic Insulin data set



- 45 degrees
- 90 degrees
- 135 degrees
- 180 degrees

# SAD Phasing Higher multiplicity



# XM, SHELXD Dual-space methods





#### XM, SHELXD Critical parameters



- High resolution data is not so critical; 2.5 3.5 Å is fine because the distance between sites is still normally greater. Vary the resolution range to find the best solution.
- The *resolution* at which the  $\Delta F$ -data are truncated, e.g. where the internal CC (CC<sub>1/2</sub>) between the signed anomalous differences of two randomly chosen reflection subsets falls below 30% or  $\Delta F/\sigma$  falls below 1.3.
- The *number of sites* requested should be within about 20% of the true value so that the occupancy refinement works well (and reveals the true number).
- In the case of a soak, you can allow sites on *special positions* but in general this should be disabled.
- DSUL command allows a two-atom search treating disulfide bridges as super sulfurs.

In difficult cases it may be necessary to fine-tune these settings and run more trials (say >10000 rather than 1000).

#### XM, SHELXD Correlation coefficients



- Compares the Normalized structure factor calculated from the substructure to that found from the difference data
- The CC is calculated with all data (CC-all) and also with only the weaker *E*-values (CC-weak) that were not used in the dual-space recycling
  - CCall >30%
  - CCweak >15%
  - CFOM >45%

# XE, SHELXE Density modification and Phasing



#### Sphere of Influence

- Assign the protein and solvent regions by calculating the variance of each voxel (volume element) on spherical surface in the density map
- Voxel with large variances belong to the protein region, lowest variances solvent
- A crossover region or fuzzy solvent boundary is used to prevent the density modification from being locked into a poor solvent boundary

# XE, SHELXE Autotracing algorithm



A fast autotracing algorithm has been incorporated into the density modification in SHELXE

- Find potential  $\alpha$ -helices in the density and try to extend them at both ends. Then find other potential tripeptides and try to extend them at both ends in the same way.
- Tidy up and splice the traces as required, applying any necessary symmetry operations.
- Use the traced residues to estimate phases and combine these with the initial phase information using sigma-A weights, then restart density modification. The refinement of one B-value per residue provides a further opportunity to suppress wrongly traced residues.

# XE, SHELXE Criteria for accepting chains



- The overall fit to the density should be good.
- The chains must be long enough (in general at least 7 aminoacids); longer chains are given a higher weight.
- There should not be too many Ramachandran outliers.
- There should be a well defined secondary structure ( $\phi / \phi$  pairs should tend to be similar for consecutive residues).
- On average, there should be significant positive density 2.9 Å from N in the N $\rightarrow$ H direction (to a hydrogen bond acceptor).



# XE, SHELXE Figures of merit



- Contrast
  - Comparison of the variance for the solvent and protein regions
  - Should be higher for the correct HA enantiomorph
  - Clear separation usually indicates a correct substructure
- Connectivity
  - Fraction of adjacent pixels that have similar assignments
  - Should be higher for the correct HA enantiomorph
- Model correlation coefficient
  - CC for the trace and native data
  - Above 25% usually means that the model is correct

#### Lysozyme Native SAD phasing

165°

0.5°

11 min

- Space group  $P4_32_12$
- Cell constants *a=b=*77.6, *c=*38.1 Å
- Data collected
- Exposure time 2 sec/image
- Image width
- Wall time
- Max resolution 1.6 Å
- Rmerge 3.12 (17.6)
- I/σI 33.3 (7.5)
- Multiplicity 8.1 (11)
- CC<sub>1/2</sub> >97%
- D8 VENTURE
  - METALJET, GaKα
  - PHOTON II





#### Lysozyme Setup

- SHELXC
- Based on the data metrics, truncate the data at 2.6-2.8 Å to conduct substructure search





# Lysozyme Substructure

- Input the number of sites based on the sequence or know metal sites
- Select the resolution limit, try lowering in steps of 0.5 Å to find a solution
- Select disulfides if know to be present in structure, these should be input as a single site
- 1000 trials is a good start
- If there are two distinct groups of solutions, that's a good sign that you have a correct substructure
- Look for a separation between the real peaks and noise for phasing







#### Lysozyme Phasing

- Input the number of DM cycles, 20 works well
- Select the solvent content
- For autotracing, 3-6 cycles is a good start
- Select the method of model tracing and which enantiomorph to use
- Can refine the HA sites
- Usually a good sign if there is a clear difference in the contrast between enantiomorphs
- Residues fit, Mean chain length and the Model CC are displayed



#### Lysozyme Native SAD phasing

- SHELXD
  - 10 Sulfur sites
    - 8 Cys
    - 2 Met
    - 3 other sites
  - Resolution 2.8 Å
  - Cycles 1000
- SHELXE
  - Residues found 124
  - Final CC 43.02



Electron density map calculated using Native SAD phases from SHELXE



#### Lysozyme Native SAD phasing

- Phases from SHELXE input into Buccaneer (CCP4)
  - 129 residues fit
- Refmac results

| Final statistics  |        |  |  |  |  |  |
|-------------------|--------|--|--|--|--|--|
| R factor          | 0.1840 |  |  |  |  |  |
| R free            | 0.2096 |  |  |  |  |  |
| Rms Bond Length   | 0.010  |  |  |  |  |  |
| Rms Bond Angle    | 1.39   |  |  |  |  |  |
| Rms Chiral Volume | 0.089  |  |  |  |  |  |





# Glycoside Hydrolase PSLG Native SAD phasing with Cd

- Pseudomonas aeruginosa
- 416 aa
  - 4 Cd bound
  - 9 MET
- Space group
- Cell constants
- Data collected •
- Exposure time 180 sec/ •
- Wall time 11.3 hrs •
- Max resolution 2.25 Å •
- Rmerge
- I/σI
- Multiplicity
- **D8 VENTURE** 
  - METALJET, GaKα
  - PHOTON II

11.7 (44.9)

6.3 (7.6)

14.6 (3.37)

$$a=D=80.3, C=103.4$$





# Glycoside Hydrolase PSLG Substructure



• SHELXD finds the four Cd sites

| Sites | Х        | Y        | Z        | OCC   |
|-------|----------|----------|----------|-------|
| S1    | 0.094476 | 0.828214 | 0.113359 | 1.000 |
| S2    | 0.133167 | 0.623676 | 0.084805 | 0.818 |
| S3    | 0.293849 | 0.494024 | 0.074887 | 0.412 |
| S4    | -0.05802 | 0.581758 | 0.153117 | 0.392 |
| S5    | 0.064199 | 0.799539 | 0.124275 | 0.150 |
| S6    | 0.120617 | 0.862052 | 0.126271 | 0.032 |



#### Data metrics

| Res     | 9.11 | 5.61 | 4.22 | 3.45 | 2.95 | 2.6   | 2.33 | 2.12 | 1.96 | 1.82 | 1.7   |
|---------|------|------|------|------|------|-------|------|------|------|------|-------|
| <ΔF/σ>  | 1.69 | 1.36 | 1.08 | 0.97 | 0.86 | 0.82  | 0.76 | 0.74 | 0.72 | 0.68 | 0.69  |
| CC(1/2) | 47.4 | 51.5 | 30.2 | 24.5 | 5.3  | -10.1 | -1.7 | 1.6  | -3   | -10  | -11.3 |

# Glycoside Hydrolase PSLG Phasing



- Clear difference in the contrast between the different HA hands
- Takes a while but eventually the phase error drops enough where most of the backbone can be fit



# Glycoside Hydrolase PSLG Native SAD phasing

BRUKER

- SHELXD
  - 4 Cd sites
  - Resolution 2.9 Å
  - Cycles 1000
- SHELXE
  - Residues found 312
  - Final CC 34.9

| Anomalous differences (σ)* |         |  |  |  |  |
|----------------------------|---------|--|--|--|--|
| 19.31                      | CD_CD   |  |  |  |  |
| 2.07                       | SD_MET  |  |  |  |  |
| 1.03                       | CA_HIS  |  |  |  |  |
| 0.97                       | CE_MET  |  |  |  |  |
| 0.8                        | CG_MET  |  |  |  |  |
| 0.75                       | C_HIS   |  |  |  |  |
| 0.63                       | CB_HIS  |  |  |  |  |
| 0.59                       | O_HIS   |  |  |  |  |
| 0.59                       | OE1_GLU |  |  |  |  |

\*ANODE, Thorn (2011)



Electron density calculated from SHELXE phases. The final model was superimposed on the map using Molrep

# Glycoside Hydrolase PSLG Native SAD phasing



- Buccaneer (CCP4)
  - Fit 416 residues
  - Manual building
  - Solvent search

| Final statistics  |       |  |  |  |  |  |
|-------------------|-------|--|--|--|--|--|
| R factor          | 0.179 |  |  |  |  |  |
| R free            | 0.225 |  |  |  |  |  |
| Rms Bond Length   | 0.014 |  |  |  |  |  |
| Rms Bond Angle    | 1.62  |  |  |  |  |  |
| Rms Chiral Volume | 0.094 |  |  |  |  |  |



# Glucose Isomerase Native SAD phasing

- Streptomyces rubiginosus Space group I222
- Cell constants a=92.9, b=98.3, c=102.6 Å
- Data collected 370°
- Exposure time 2 sec/image
- Image width
- Wall time
- Max resolution 1.5 Å
- Rmerge 6.89 (54.8)
- 19.2 (2.73) I/σI
- 8.7 (13.5) Multiplicity
- $CC_{1/2}$ >80%
- **D8 VENTURE** 
  - METALJET, GaK $\alpha$ •
  - PHOTON II



0.2°

1 hour





# Glucose Isomerase Setup

 From the statistics, it appears that finding a substructure might be difficult





#### Glucose Isomerase Substructure

- 388 residues
- 7 Met, 1 Cys
- 2 potential metal binding sites, Mg
- From the CC values, there are clearly two groups of possible solutions
- With a mix of metals and sulfur sites, the metals will have a much higher occupancy

| Sites | Х        | Y        | Z        | OCC    |
|-------|----------|----------|----------|--------|
| S1    | 0.91745  | 0.632484 | 0.066007 | 1.000  |
| S2    | 0.885094 | 0.669617 | 0.239288 | 0.2866 |
| S3    | 0.935005 | 0.652687 | 0.185669 | 0.2784 |
| S4    | 0.83223  | 0.739471 | 0.231278 | 0.2601 |
| S5    | 1.006042 | 0.55851  | 0.224823 | 0.2541 |
| S6    | 0.79557  | 0.687576 | 0.104551 | 0.245  |
| S7    | 1.133896 | 0.724449 | 0.153998 | 0.2428 |
| S8    | 0.872887 | 0.64222  | 0.085739 | 0.241  |
| S9    | 0.853523 | 0.514725 | 0.33025  | 0.2129 |
| S10   | 1.226158 | 0.634514 | 0.048438 | 0.1938 |





# Glucose Isomerase Phasing

- Clear difference in the contrast between enantiomorphs indicates which heavy atom hand is correct
- Traced 363 residues
- Final CC for the model was 41 %





# Glucose Isomerase Native SAD phasing

- SHELXD
  - 10 sites
    - 2 metal (Mn, Mg)
    - 7 Met
    - 1 Cys
  - Resolution 3.0 Å
  - Cycles 1000
- SHELXE
  - Resides found 363
  - Final CC 41.24 %







Electron density map calculated using Native SAD phases from SHELXE

#### Glucose Isomerase Native SAD phasing

- Phases from XE input to PHENIX
  - 382 residues fit
- Refinement results

| Final statistics |       |  |  |  |  |
|------------------|-------|--|--|--|--|
| R factor         | 0.216 |  |  |  |  |
| R free           | 0.230 |  |  |  |  |
| Rms Bond Length  | 0.010 |  |  |  |  |
| Rms Bond Angle   | 1.22  |  |  |  |  |
| Avg B-factor     | 13.9  |  |  |  |  |







• Space group C2

• Cell constants a=117.2, b=68.2, c=60.0 Å $\beta=96.6^{\circ}$ 

- Zn-dependent enzyme
- Trimer, 186 residues
  - 3 Met
  - 1 Cys
- Wall time 6.5 hrs
- D8 VENTURE
  - Ιμ**S**, CuKα
  - PHOTON II



# CYCLODIPHOSPHATE SYNTHASE Data collection



- Collect high and low angle data separately
  - High angle 40 sec/deg
  - Low angle 13 sec/deg
- Only integrate the low angle runs at the substructure cutoff (2.5 Å)

|                | High Angle   | Combined     |
|----------------|--------------|--------------|
| Resolution (Å) | 18.0 -1.70   | 18.0 -1.70   |
| Rmerge         | 0.052 (0.58) | 0.051 (0.58) |
| <i σi=""></i>  | 24.5 (2.58)  | 28.2 (2.58)  |
| CC (1/2)       | (65.0)       | (65.0)       |
| Completeness   | 99.0         | 99.9         |
| Multiplicity   | 7.0 (9.1)    | 9.3 (16.5)   |
| Time           | 5.3 hrs      | 1.3 hrs      |



- SHELXD
  - 12 sites
    - Zn
    - 11 Met
    - 3 Cys
  - Resolution 2.5 Å
  - Cycles 1000
- SHELXE
  - Resides found 435
  - Final CC 45.3 %



| Res     | 9.11 | 5.61 | 4.22 | 3.45 | 2.95 | 2.6  | 2.33 | 2.12 | 1.96 | 1.82 | 1.7   |
|---------|------|------|------|------|------|------|------|------|------|------|-------|
| <∆F/σ>  | 1.75 | 1.28 | 1.1  | 0.9  | 0.77 | 0.76 | 0.7  | 0.66 | 0.68 | 0.72 | 0.8   |
| CC(1/2) | 44.4 | 43.6 | 26.3 | 7.3  | 5.3  | 2.4  | -2.6 | -2.8 | -6.5 | -13  | -20.3 |







- Phases from XE input to Buccaneer
  - 490 residues fit
- Model tweaked and solvent search
- Refinement results

| Final statistics |       |  |  |  |  |  |
|------------------|-------|--|--|--|--|--|
| R factor         | 0.186 |  |  |  |  |  |
| R free           | 0.224 |  |  |  |  |  |
| Rms Bond Length  | 0.010 |  |  |  |  |  |
| Rms Bond Angle   | 1.36  |  |  |  |  |  |
| Rms ChirVolume   | 0.077 |  |  |  |  |  |





Innovation with Integrity

© Copyright Bruker Corporation. All rights reserved.