

Data Reduction and Evaluation with PROTEUM3

PROTEUM2 Suite

The PROTEUM2 suite has a completely new approach on how a user interacts with a crystallographic experiment. The Graphical User Interface guides the user through the complete experiment with minimal user input and maximal graphical feedback. PROTEUM2 is easy to use for the novice but has all the features required by expert crystallographers.

Some of the software's included in PROTEUM2 suite are:

- SAINT 3D profile integration
- SADABS data scaling with absorption correction
- XPREP space group determination and data analysis
- Pointless/Aimless data analysis and create MTZ

Determine the raw intensities of the reflections

- True 3D profile fitting
 - Creates reflection profiles
 - No partial reflections
- Extended Graphical feedback
 - 3D profile display
 - Spot overlays
- Automatic, manual modes
- Easily handles fine sliced data
- Handles twinned data

Steps during integration:

- Determination of an initial background
- Determination of active pixel mask (for marking reflections which are outside the detector active area, behind the beam stop or the shadow of the low temp device)
- Read-in the orientation matrix
- Determination of initial spot shape profiles, with concurrent refinement of the starting orientation matrix and initial background
- Integration of each defined run; output intensities are corrected for Lorentz factor, polarisation, air absorption and absorption due to the variation of the path length through the detector faceplate
- Elimination of spots whose shapes correlate poorly with model profile shapes, relative to other spots of similar $I/\sigma(I)$

Screen				
Collect	Starting Image Filename 1 C\frames\demo\Ne(1\\$207E3_01_0001.sfm	Images Output Filename 800 C:Virames\demo\Nei1\work\S207E3 01 raw		utic
educe Data	2		Unit Cala:	i+
	3 4			ιι
$X \alpha$	5			tc
ZYP	<u>6</u> 7			LS
ate Images	8			
	9 10			
28 I	11		a=132.14Å, α= 90.00°, V=769001Å ³	
cale	12		b=132.14Å, β= 90.00°, Rhombohedral	R
	14		c= 50.86Å, γ=120.00°	
	15			
\mathbf{T}	17			
and Convert	19			
ages	20			
	21 22			
	23			
	24 25			
	26			
	27 28			
	29			
	30 31			
	32			
	33 34			
	35		Refinement,	,
	36 37		Reinement Options	
	38			
	³⁹ 40			
	41		Import Runs from Experiment	
e Data	42 43			
tructure	44		Start Integration	

6

SAINT Importing runs

Find Runs

- Looks in the entry folder for the number of runs and images
- You can select all or just the runs you want and click "OK"

Import Runs from Experiment

- Gets scan information directly from BIS
- Need to be connected to the instrument to import from BIS

Find Runs...

Import Runs from Experiment

SAINT Refinement options

+** Refinement Options	2 ×	
Per-Image Refinement Image Refinement Image Refinement Image Refinement Image Refinement Image Refinement	Damping Factor: 1.000 Initial XYZ Box Size [*]: 0.633 0.633	 Initial box size Determined automatically
Periodic Refinement ✓ Enable Periodic Refinement ✓ Enable Initial Passes Frequency [Images]: 50 ♦ Constrain Metric Symmetry of Unit Cell to: ● Tetragonal ● Crystal System: Tetragonal	Global Refinement Clobal Refinement Max. Number of Reflections: 9999	 by the program and refined during integration. If the mosaic spread is very high (> 1.5°), you may want to turn off the refinement and set the box size based on the initial profiles.
Refinement Parameters Detector Horizontal Beam Center Vertical Beam Center Distance Pitch Roll Yaw Unit Cell Axes Angles 	Refinement Parameters Detector Horizontal Beam Center Vertical Beam Center Distance Pitch Yaw Unit Cell Axes Angles	

SAINT Refinement options

Per-Image Refinement		
Enable Orientation Refinement	Damping Factor: 1.000	
Enable Box Size Refinement	Initial XYZ Box Size [*]: 0.633 0.633 0.752	
Periodic Refinement	Global Refinement	
Enable Periodic Refinement	Enable Global Refinement	← Cell refinement
Enable Initial Passes Frequency Images]: 50	Max Number of Reflections: 9999	 Periodic LS refinement during integration after a set of images.
Constrain Metric Symmetry of Unit Cell to: Tetragonal Crystal System: Tetragonal	Constrain Metric Symmetry of Unit Cell to: Tetragonal Crystal System: Tetragonal	 Global LS refinement takes reflections from the whole data set and produces the final unit cell constants Refinement Parameters assign
Refinement Parameters Detector Horizontal Beam Center Vertical Beam Center Distance Pitch Roll Yaw Unit Cell Axes Angles	 Refinement Parameters Detector → Horizontal Beam Center → Vertical Beam Center → Distance → Pitch → Pitch → Roll → Yaw ↓ Unit Cell → Axes → Angles 	the offsets updated during refinement. To add or subtract parameters, click the box next to the offset.

Nodel Profiles	-Background Subtraction
Enable LS Profile Fitting	Use Recurrence Background Scaling Factor: 1.000
✓ Blend Profiles from All Detector Regions	Use Best Plane Background
Intensity/Sigma Lower Limit for Model Profile Update: 10.000	Cimage Queue
Fraction of Model Profile Maximum for Simple Sum Mask: 0.050	Active Image Queue Half-Width [Images]: 20
Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000	Beam Monitor
Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000	Enable Beam Monitor Normalization
Profile XYZ Half-Widths: 4 4 4	Normalize each Run Separately
]

Model profile determination

 \downarrow

- Use either one profile for the entire detector (Blend) or split the detector into 9 different regions.
- If the detector has enough strong reflections in each region then using nine profiles will probably improve things.
- If the data is weaker, blend the profiles into one global model

Regions for unblended profiles

Integration Options	ି <mark>୪</mark>
Model Profiles	Background Subtraction
✓ Enable LS Profile Fitting	Use Recurrence Background Scaling Factor: 1.000
✓ Blend Profiles from All Detec	ctor Regions O Use Best Plane Background
Intensity/Sigma Lower Limit for Model Profile Update:	10.000 Image Queue
Fraction of Model Profile Maximum for Simple Sum Mask:	0.050 Active Image Queue Half-Width [Images]: 20
Intensity/Sigma Upper Limit for LS Model Profile Fit:	8.000 Beam Monitor
Lower Resolution Limit for LS Model Profile Fit [Å]:	9999.000 Enable Beam Monitor Normalization
Profile XYZ Half-Widths: 4	4 4 A Normalize each Run Separately
More Options	OK Cancel

Model profile determination

- Enable LS profile fitting to help model the weak data better.
- Intensity/Sigma Lower Limit is the signal to noise cutoff for reflections used in the model profile determination.
- Profile XYZ Half-Widths if using very fine slicing (ex 0.1 0.2°), try increasing the profile widths. The widths in each direction are 2N + 1, for 0.2° try 8, 8, 8.

Thegration Options	ି <mark> </mark>
Model Profiles	Background Subtraction
✓ Enable LS Profile Fitting	Use Recurrence Background Scaling Factor: 1.000
✓ Blend Profiles from All Detector Regions	Use Best Plane Background
Intensity/Sigma Lower Limit for Model Profile Update: 10.000	Image Queue
Fraction of Model Profile Maximum for Simple Sum Mask: 0.050	Active Image Queue Half-Width [Images]: 20
Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000	Beam Monitor
Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000	Enable Beam Monitor Normalization
Profile XYZ Half-Widths: 4 4 4	Normalize each Run Separately
More Options	OK Cancel

The background scatter is subtracted to increase the signal noise of the reflection

- Recurrence method Calculates average local background over several frames
- Best Plans method Determines local background by pixels around the reflection on the current frame only (like HKL, denzo)
- Try both to see which gives the better result

Integration Options	ि <mark>२</mark>
Model Profiles	Background Subtraction
✓ Enable LS Profile Fitting	Use Recurrence Background Scaling Factor: 1.000
✓ Blend Profiles from All Detector Regions	O Use Best Plane Background
Intensity/Sigma Lower Limit for Model Profile Update: 10.000	Image Queue
Fraction of Model Profile Maximum for Simple Sum Mask: 0.050	Active Image Queue Half-Width [Images]: 20
Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000	Beam Monitor
Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000	Enable Beam Monitor Normalization
Profile XYZ Half-Widths: 4 4 4	Normalize each Run Separately
More Options	OK Cancel

The image queue defines the angular range over which a spot is integrated. Spots that are very wide, like those in the Lorentz region, can be rejected.

- Defines the queue half-width (2N+1). For example, if you are collecting 0.2° rotations and have set the image queue to 7, the angular range is: 0.2° x 2(15) = 6°.
- Decrease the queue to allow more reflections to be rejected, increase it to integrate more of the data.

SAINT Image queue

Image queue = 2n + 1 = 15

Integration Options	ନ୍ତି <mark>- x</mark>
Model Profiles	Background Subtraction
✓ Enable LS Profile Fitting	Use Recurrence Background Scaling Factor: 1.000
✓ Blend Profiles from All Detector Regions	O Use Best Plane Background
Intensity/Sigma Lower Limit for Model Profile Update: 10.000	
Fraction of Model Profile Maximum for Simple Sum Mask: 0.050	Active Image Queue Half-Width [Images]: 20
Intensity/Sigma Upper Limit for LS Model Profile Fit: 8.000	Dears Macilian
Lower Resolution Limit for LS Model Profile Fit [Å]: 9999.000	Enable Beam Monitor
Profile XYZ Half-Widths: 4 4 4	Normalize each Run Separately
Active Mask	- Twin Overlap Determination
Generate Mask with Fractional Lower Limit of Average Intensity: 0.000	Minimum Common Volume [%]: 4.000
O Use Pre-Existing Static Mask from File:	Separation Factor: 1.000
O Use Pre-Existing Dynamic Masks	Maximum Range: 1.300
- Diamond Anvil Cell	Modulated Structure Integration
Aperture Half-Angle [*]: 0.000 Phi Angle [*]: 0.000	Maximum Satellite Index: 1
Algorithm	-Output / Diagnostic Files
Use Narrow Frame Algorithm Use Wide Frame Algorithm	Generate Diagnostic Plot Files
Monte Cado Simulation	Keep Temporary Files
Number of Monte Carlo Simulations:	Hide Log Window
Junea Terran 4	
Wait for Images During Data Collection	Verbosity of Listing File: 2 ← Snapshot Output Frequency [Images]: 100 ←

BRUKER

Selecting the More Options button shows more parameters

Active Pixel

- Creates a mask for the beamstop shadow
- Program automatically creates a mask if fractional lower limit is set to 0
- Can also read in a predefined mask (Synchrotron detectors)

Algorithm

- Narrow frame for rotation angle < 1°
- Try Wide frame for images > 1°

Spot Shape Correlation

- Agreement between the model profile and reflections.
- Typically > 0.5, if too low (0.2) then the space group is not correct.
- Integrating at an incorrect resolution limit will also cause the correlation to be low.

Average Spot intensity

 Spot intensity and I/σI values per image

Average Difference: X,Y,Z

 Positional errors between observed and predicted reflections. Values consistently over 0.3 suggest problems

Spot Profiles

 3-D display of the model spot profiles base on strong reflections

Comple Instru	mont Chart	emo (demo) - Sample: UW_A - Licensed to Matt Benning at Bi	
Sambie Tursun			
	NOTE STOP	SH FI	
Set Up	/ Setup \		
Screen	Starting In	age Filename	Images Output Filename
Collect	1 C:\frames	demo\UW_A\UW_A_01_0001.sfm	662 C:\frames\demo\UW_A\work\UW_A_01.raw Dis Resolution Limit [A]: 1.903
Reduce Data	2		
	3		Unit Cells:
	4		a=119.14Å, α= 90.00°, V=340912Å
	5		D= 44.97A, β=120.95°, Monocimic C c= 74.19Å, γ= 90.00°
Ŷ R	6		
$1/2$ γ P	7		
Integrate Images	0	III C:\frames\demo\UW_A\work\UW_A 01. Is	2 X
	°		
	3		ent 1 in UN_A_01.raw) <i> <fsio> <bo> Rsvm dI/I dI/s R+ Ranom Canom ErX ErY ErZ RmX RmY RmZ</bo></fsio></i>
	10	0.000 1966 958 1008 1916 31.6	5837.338 21.74 123.27 0.063 0.000 1.5 0.000 0.120 0.00 .00 .00 .00 .18 .13 .27
	11	1.000	
	12	Coverage Statistics Integration of UN A	
Scale	13	1.1(1): component 1 in sample 1 (compo	ent 1 in UN_A_01.raw)
	14	Angstrms #Obs Theory #Compl Redund Rs	m Pairs &Pairs Rshell #Signa %<2s
	15	to 3.250 4558 5521 82.56 2.74 0.0	7 2273 81.18 0.037 62.18 3.3 4 4412 79.91 0.053 29.23 4.4
	16	to 2.839 6788 8236 82.42 2.76 0.0 to 2.579 8972 10926 82.12 2.77 0.0	8 6486 78.75 0.070 14.07 14.1 1 8484 77.65 0.082 9.38 21.8
	17	to 2.395 11157 13628 81.87 2.78 0.0	4 10447 76.66 0.102 6.65 31.4
	18	to 2.141 15458 18986 81.42 2.78 0.0	1 14179 74.68 0.154 4.12 39.6
Unwarp and Convert	19	to 2.047 17589 21665 81.19 2.78 0.0 to 1.969 19733 24354 81.03 2.79 0.0	4 16006 73.88 0.170 3.22 47.7 7 17815 73.15 0.222 2.08 61.8
Images	20	to 1.901 21741 27055 80.36 2.78 0.0	9 19434 71.83 0.290 1.56 70.5
	21	Local LS refinement averages	10/03/2016 20:15:33
	22	Component numbers S.C(F) below: S=sample, C	component in sample, F=component in file
	23	Local averages for component 1.1(1) (compon	nt 1 in sample 1, 1 in file)
	24	Number of local refinements averaged: 13	
	25	Averaged orientation ('UB') matrix:	
	25	0.0018369 0.0090303 -0.0105114	
	20		Damiss
	2/		Refinement Options
	28		Integration Options
	29		
	30		Bod Rune
	31		
	32		Import Runs from Experiment
	33		
Examine Data	34		
Solve Structure	35		Start Integration
Report			

Double clicking on the Output filename activates the **E**IS buttons.

- The folder button allows you to search for and update the filename.
- The "Is" button opens the log file.

Output files in the *work* subdirectory

Integrate Images (SAINT)

Output Files	Extension	Description
Raw intensity	*.raw	Contains the raw unscaled, unmerged intensities. A separate file is created for each scan which has the filename prefix plus the scan number (<i>prefix_#.</i> raw). A merged file is also created containing all the reflections from each scan (<i>prefix_0m.</i> raw).
Log *Is Contains the output from integration. A set prefix plus the scan number (prefix_#Is from each scan (prefix_0mIs).		Contains the output from integration. A separate file is created for each scan which has the filename prefix plus the scan number (<i>prefix_#</i> Is). A merged file is also created containing all the reflections from each scan (<i>prefix_</i> 0mIs).
Matrix	*.p4p	This file contains unit cell information. When the integration is finished, a file called <i>prefix_</i> 0m.p4p is created which contains the updated cell information. There is also a file written, <i>prefix_</i> 0u.p4p which contains the unconstrained cell constants. This file can be manually created in PROTEUM by selecting "export>p4p" file from the "Sample" menu in the upper right corner. The p4p file also contains the table for the detector spatial correction. If you're creating a new database entry to work with old data, be sure to read in a p4p file before continuing after opening the entry by selecting "Import>p4p" from the "Sample" menu.
Active Mask	*.sfrm	This is an image file which contains the mask for the beamstop shadow. The filename contains the frame prefix, run number and frame number (0001). For example, <i>prefix_am_01_0001.sfrm</i> . You can view this file in PROTEUM as you would any image file to verify that SAINT is properly masking out the shadow.
Charting	*.cht	This file contains all the charts that were displayed in PROTEUM during the integration. The file can be re-opened in PROTUEM by clicking on the "Integrate Images" plugin and selecting "Open Chart File" from the Chart menu in the upper right corner of the GUI.

SADABS Data scaling

Steps during scaling:

- Scaling: determination of scaling and absorption parameters that assure the data is internally consistent
- Error model: the standard deviations of the intensities are modelled so that they are consistent with the deviation of the individual intensities from the mean intensity of group of equivalents.

Systematic errors:

- Absorption of the primary beam by the crystal (and support)
- Crystal decomposition
- Intensity variation of the primary beam (e.g. synchrotron)
- Changes in the effective volume irradiated.
- Beam inhomogeneity.

SADABS Inputting Raw files

🔖 PROTEUM3 v2016.9-0 - Usen: demo demo (demo) - Sample: Neil1 - Licensed to Matt Benning at Bruker		Clicking the browser
	Scale 🗕 🗗 🗙 🖷	
📄 🖻 🍯 🧔 😒		button for the base name
Set Up Setup Absorption Correction Parameter Refinement Error Model Finalize Diagnostics		an and the coloction
Screen Calect	Setup	pens the selection
Reduce Data	2 x	window.
Look in: C:\frames\demo\Nel1\work		Coloct any filename to input
itegrate inages Name Name Name Name S207E3_01raw	Size Type Date Modified 20 9 MB raw File 1/6/2017 8:51:04 AM	a single raw file
Sole		
Files of type: Reflection files ('raw 'ram 'mul 'sam)	Cancel	
Uneo or Convert Inspen		
Unchecking "Merged B	atches" allows	
you to deselect runs		
	Select Al Deselect Al	
	Laue Grup 3 V	Point Group
	☐ Additional Spherical Recordion Controllon Mu1 of Equivalent Sphere 0.20	The point group will be set
	/ Vecoption Correction	based on the assignment
	With Scan Vanetool Nucleotated Numetool Nucleotated Numetool Nucleotated	during indexing but you can change it by clicking the arrow
Examine Data	Advanced Setup	To keep the Eriedel motor
Solve Shucture Report	Start Over Start Finish	
		separate uncheck the "Use

To keep the Friedel mates separate uncheck the "Use only centrosymmetry point groups" box. All possible point groups will then be available.

SADABS Advanced setup

Setup		
Advanced Setup		
Output File Type Unmerged .hkl file Output Base Name S207E3 Output HKL File Name S207E3_0m.hkl		Output filenames are suggested based on the
Output HKLF5 File Name Diagnostic Plots File Name S207E3.eps Title of Diagnostic Plots S207E3		entry name. These can be changed by editing the box.
Log File Name S207E3.abs Fast Scan Resolution Cutoff [Å] 1.5 Allow for crystal decomposition None by B-value refinement Extra Linear Correction to be Applied		
to Each Reflection: Spatial display of (I- <i>)/su greater than 3.0 Apply angle of incidence correction Apply angle of incidence correction Phosphor Efficiency Aut Apply lambda correction None Lambda Correction Factor 0.0</i>	• • • • • •	 Zero-dose correction Compare the same reflection collected as a function of time to model radiation decay Linear Quadratic

SADABS Scale factors

Check function

 Unconstrained cell constants and instrument error. Mean error should be >0.005.

Parameters refinement

- Scale factor restraint prevents overfitting data. Can loosen a bit, 0.01
- Absorption type, medium works well for most but if there are heavy atoms and enough data can try strong absorber

SADABS Scale factor

- Blue line shows the mean weight of the observations for all the reflections. As the observations get farther from the mean, they are down weighted. If the Mean Weight falls below 0.75, the data agreement is not good.
- Light blue line represents the Rfactor with scale factors only, the dark blue line is the Rfactor adjusted for adsorption. Most of the time they will converge but when there is a significant absorption affect, the blue line may exhibit a lower Rfactor.

SADABS Error model

- Determination of an error model for errors that cause equivalent reflections to disagree.
- It deletes a small number of reflections that are completely incompatible with their equivalents, for example reflections blocked by the beam stop etc.
- Then determines an error model for the remaining reflections by fitting χ² to unity to put σ(I) onto an absolute scale.

SADABS Diagnostics

N PROTEUM3 v2016.9-0	- User: demo demo (demo) - Sample: Neil1 - Licensed to Matt Benning at Bruker		
♣ Sample Instrum	nent Windows Help		Scale
1	🖻 🐵 👷		
Set Up	Setup Absorption Correction Parameter Refinement Error Model Finalize	Diagnostics	
Collect	Parameters Derived From Direction Cosines	Initial Reflections	Reflections After Outlier Rejection
Reduce Data	Меал Етог 0.0	Total 85093	Total 84901
	Maximum Error 0.0	Unique 22258	Percent Rejected [%]
A Ba	Wavelength [A]	Numerical Absorption Correction	Unique 22236
Integrate Images	Unit Cel [131.92 [131.93 [50.849 [90.005 [89.979 [120.007]	Absorption Coefficient (mm-1)	
	- Data Statistics	wR2(int) Parameter Refinement	Error Model gvalue
	Махітит 2-0 ['] 45.34	Intial Rnal	30ggeneo 0.0305
	Maximum Resolution (Å) 2.000	retinement 	
	Domain First Domain V		HKL Transmission Data
	Reflections 85093		Corrected Reflections 84801
Scale	Data Per Frame 107.17		Replaced Reflections
~	Average Redundancy 3.82		Mnimum Transmission 0.858800
			Maximum Transmission 1.00000
Unwarp and Convert			Hatio of Min/Max Iransmission
Images			HKLF 5 Transmission Data
			Corrected Reflections
			Rato of Mn/Max Transmission
Examine Data	Statistics Reflection Graphs Refinement Graph Error Model Graphs Scale	Variations Intensity Statistics Chi-Squared Spatial Distribution Diederichs Gr	aph
Solve Structure			Ба
Heport			

SADABS Plots

- Upper graph: scale factors versus frames and runs. Big variation are due to different illuminated volume.
- Bottom graph: R_{int} versus frames and run.

SADABS Plots

 χ^2 versus resolution and intensity. It should be closer to 1.

Outliers relative to detector area for each different 2θ angle. Show bad pixels, shadows, ice rings...

SADABS Output

Output files in the *work* subdirectory

Output Files	Extension	Description
Scaled Intensities	*.hkl	File contains the scaled, unmerged intensities in SHELX HKLF4 format
Log	*.abs	Log file from SADABS

XPREP

- Space group determination and data statistics are carried out with the software XPREP.
- Steps during space group determination:
 - Determine metric symmetry and lattice group
 - Determine Laue symmetry (R_{int})
 - Find systematic absences
- XPREP can also be used to calculate statistics, calculate anomalous signal, merged data, prepare files for ShelxD...

v2016.9-0 -	nont Mindeur Llein					Determine Cases Group
Instrum	nent <u>w</u> indows <u>H</u> eip					
1	🗾 🐵 💦					
	Setup / Lattice Exceptions / Space Group	Determination V Statistics V Cell Information V Diag	nostics			
`	Input Files					
ata				hki file S207E3_0m.hkl		
ata				p4p file: S207E3_0m.p4p		
pace						
ap 1	-Output Files					
ata :				output .hkl file: S207E3_0m.hkl		
	prp file: [S207E3_0m.prp			✓ output .sca tile: S207E3_0m.sca		
t Colls						
t Cells	-Unit Cel	b	¢	alpha	brta	panna
t Celis	-Unit Cel- a cel: [31.91]	b 	c 50.835	doha 09	bda 	ратта 122
cession	- Unit Cel a cel [131.911 cel esta (0.006	b) [131.911) [0.000	c 50.835 0.002	ajoha 0 0	bita 50 0	gamma [120 0
cession ction	- Unit Cel	b 131.911 0.000	c 50.835 0.002	abha 90 0	bite 90 0	pamma [120 0
cession	- Unit Cel a cel [131.911 cel ecis [0.006	b [131.911 0.000	c 50.835 0.002	sipha 0 0	bta 90 0	gamma 22 0
cession ction	Ukt Cel = cel [131.911 cel ecis (0.006	b [131.911 (6.000	c 50.835 0.002	alpha 99 0	brta 50 0	germa [120 0
cessor	Unt Cel a cel [31.91] cel ecis (0.006 Experimental Parameters Must be chiral Padaton Type: Cu	b 131.911 0.000	c 50.835 0.002	eipha 0 50 0	bta 90 0	gamma 22 0
cossion	Unit Cel a cel [31:91] cel esds (2006 - Eperimental Parameters Must be chiral Radation Type: Cu	b [31311] [0.000	c 50.335 0.002	abha 60 0	beta 90 0	patma 120 0
cession	Unit Cel a cel [131.911 cel ecis [0.006	b 131.911 0000	c 50.835 0.002	abha 59 0	bda 90 0	920000 120 0 0 0 0 0 0 0 0 0 0 0 0 0

- Most of the information comes from the Database
- Can output a scalepack in addition to SHELX HKL

Find the correct metric symmetry (correct lattice type) by checking systematic absences

PROTEUM3 v2016.9-0	0 - User: demo demo (demo) - Sample: Neil1 - Licensed to Matt Benning at Bruker				
🐐 <u>S</u> ample <u>I</u> nstru	iment <u>W</u> indows <u>H</u> elp				Determine Space Group 💶 🗗 🗙 🔤
1	🔟 💩 💦				
Set Up	/ Setup V Lattice Exceptions V Space Group Determination V Statistics V Cell Information	Diagnostics			1
Collect	Bravais Lattice	Volume R(evm)			
Reduce Data Examine Data		0 766046.75 0.046			
•m.p4p •m.hkl Determine Space Group	- O RHAMBOHEDRAL Plance 78.021 78.021 78.021 115.42 115.44 115.4	2 255,148,84 0.046			
×	Systematic absence exceptions	Systematic absences not requi	red for triclinic systems		
Approp	61/65 62=31 63 -cc				
Miayze Data	N 7 0 7 1649 938 N I>3s 6 0 6 1124 655	Six measured i	reflections pos	sible for a six-fol	d screw axis
A A	230.4 0.0 230.4 35.9 35.4 23.2 0.0 23.2 11.4 11.7	Most are strong	$n > 3\sigma$ and m	ean I and $I/\sigma I$ are	e similar
		No translationa	al symmetry		e sinnar
Compare Unit Cells			ar symmetry		
	Easter attraction				
A A A A A A A A A A A A A A A A A A A	E-Yaue statistics	0			
Synthesize Precession Images	I Non-centrosymmetric: 0.736	Mean (E"E-1)	0.805	Centrosymmetric:	l 0.968
	Identical indices and Friedel opposites combined before calculating R(sym)				
	Space Group No. Type Axes CSD R(sym) N(eq) Syst. Abs. CFOM				
	Space Groups R3 #148 centro 1 232 0.046 35739 0.0 / 9.4 4.14 R3 #146 chiral 1 85 0.046 35739 0.0 / 9.4 2.70				
Find a Reflection					
	Choose a different space group:		P1	*	Repeat
					Next
Solve Structure Report					Finish Start Over Ext
(Nyon					

- Find translational symmetry by looking at the potential systematic absences
- Will only have Screw axis for protein crystals

PROTEUM3 v2016.9-0) - User: demo demo (demo	o) - Sample: Neil1 ·	- Licensed to Matt Be	enning at Bruker								
<u>Sample</u> Instrur	ment <u>W</u> indows <u>H</u> e	elp									Determi	ne Space Group 💶 🗗 🗙 🔤
1	NOTE 😳 🕅	? =										
Set Up	(Satura) (Latting Evenent	Hann Canada Gray		atistice Call lofar		5						
Screen	7 Setup 17 Latice Except			initiation (r Cell III of	nauori ir Diagrosiu							
Collect	Current dataset: Datase	et: 1 84801 data p	ioints 520/E3_um.ni	a								
Freduce Data	Merge Data in Output	t Files	Merge	ALL equivalents (incl	uding Friedel opposite	s)						
Examine Data	Change Resolution Limi	its (A):										
	Low infinity							High 0.84]	Set New Limits Set Limits and Redo Statistics
*m.p4p												
*m.hkl	Resolution	#Data	#Theory	%Complete	Redundancy	Mean I	Mean I/s	Rint	Rsigma			
	1 20.84 - 7.97	334	361	92.5	4.27	139.9	58.68	0.0161	0.0160			
Determine Space Group	2 7.97 - 5.40	782	783	99.9	4.68	62.5	47.93	0.0194	0.0183			
	3 5.40 - 4.29	1119	1119	100.0	4.69	97.2	48.82	0.0188	0.0178			
	4 4.29 - 3.76	1102	1103	99.9	4.58	90.6	42.93	0.0265	0.0194	_		
X	5 3.76 - 3.41	1136	1139	99.7	4.50	69.0	36.45	0.0368	0.0226	_		
Aprep	6 3.41 - 3.17	1100	1101	39.9	4.59	44.1	29.24	0.0386	0.0281	_		
Analyze Data	7 3.17 - 2.98	1134	1134	100.0	4.09	29.5	23.46	0.0007	0.0301	-		
	9 283-271	1097	1097	100.0	4.51	16.1	15.62	0.0014	0.0433	-		
	10 2.71 - 2.60	1182	1182	100.0	4.41	11.8	12.55	0.1134	0.0693	-		
	11 2.60 - 2.51	1133	1133	100.0	4.30	10.6	11.23	0.1060	0.0778	-		
	12 2.51 - 2.44	989	989	100.0	3.81	9.3	9.42	0.1136	0.0930	1		
	13 2.44 - 2.37	1146	1146	100.0	3.56	7.5	7.66	0.1364	0.1187			
Compare Unit Cells	14 2.37 - 2.30	1246	1246	100.0	3.40	7.1	6.99	0.1420	0.1307			
	15 2.30 - 2.25	990	994	99.6	3.06	6.3	5.76	0.2000	0.1638	_		
	16 2.25 - 2.20	1084	1089	99.5	2.92	6.0	5.08	0.2343	0.1869	_		
	17 2 20 - 2 15	1208	1208	100.0	3.06	5.2	4.72	0.1916	0.2024	_		
×7	18 2.15-2.11	1033	1033	100.0	2.93	4.3	3.8/	0.2357	0.2482	_		
	20 207-203	1110	1204	99.4	2.75	3.0	2.63	0.3232	0.3744	-		
Synthesize Precession	21 2 03 - 2 00	978	1088	89.9	2.03	31	2.65	0.4073	0.3946	-		
Images	22									-		
	23 2.10 - 2.00	3023	3145	96.1	2.51	3.20	2.73	0.3570	0.3664			
	24 20.84 - 2.00	22236	22399	99.3	3.79	26.69	17.18	0.0461	0.0425			
Find a Reflection												
	Charts (Graphs 1)	/ Graphs 2 /										
	Overall Weighted R(int)		0.0461				Overa	all Weighted R(sigma)	0.0	3425	Anomalous Completeness %:	87.0
	Lowest Resolution (Å):		20.84									Write Reflection File
Colum Objecture			,									
Benot												Finish Start Over Ext
порон												

XPREP Output

Output files in the *work* subdirectory

Output Files	Extension	Description
Log	*.prp	The file is actively updated as you navigate through XPREP or "Space Groups and Statistics" (PROTEUM's GUI interface for XPREP).
Different file formats		The intensity file output from SADABS (*.hkl) can be converted to other file formats using XPREP. Using the "W" option from the "Read, modify or merge DATASETS" ([D]) menu, you can output the intensities in Scalepack, CNS or X-PLOR formats. You can also output a Scalepack HKL file from "Space Groups and Statistics" by checking the "output .sca file" box.

If you have CCP4 installed, add the following 3 lines to the end of the bn-config.py file

- ccp4 = "C:/CCP4-7/7.0"
- ccp4_range = [22.0,1.85]
- ccp4_autoprocess = True

- Open the "Examine Data" menu
- Select the "Pointless, Aimless" icon

- If there is no MTZ file in the work folder, PROTEUM will automatically run Pointless and Aimless based on default values and display the aimless output.
- Default resolution 25 1.85 Å
- The pointless and aimless fields are editable so you can add keywords, change the defaults and click "create MTZ file" at the bottom left to rerun the programs. The new Aimless log will appear when both programs are finished.
- If the space group is not assigned (default), PROTEUM lets pointless perform a space group search.
- The plugin will search for the <u>HKL filename_0m.hkl</u> in the work directory but you can also search for a HKL file using the browser button.

- If you want to assign a space group, select the desired group in the box below the input HKL filename. This will fix the space group to the that group assigned.
- A merged MTZ file is written out by Aimless, if you want to write out a unmerged MTZ file as well, check the "Export Unmerged MTZ"
- Output files are written to the work folder.
 - Entry prefix_AP.log is the output logfile from Aimless
 - HKL filename_merged.mtz is the merged MTZ file output by Aimless
 - *HKL filename_*umerged.mtz is the corresponding unmerged MTZ

www.bruker.com

© Copyright Bruker Corporation. All rights reserved