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Cytosine methylation or bromination of the DNA sequence
d(GGCGCC)2 is shown here to induce a novel extended and
eccentric double helix, which we call E-DNA. Like B-DNA, 
E-DNA has a long helical rise and bases perpendicular to the
helix axis. However, the 3′-endo sugar conformation gives the
characteristic deep major groove and shallow minor groove of
A-DNA. Also, if allowed to crystallize for a period of time
longer than that yielding E-DNA, the methylated sequence
forms standard A-DNA, suggesting that E-DNA is a kinetically
trapped intermediate in the transition to A-DNA. Thus, the
structures presented here chart a crystallographic pathway
from B-DNA to A-DNA through the E-DNA intermediate in a
single sequence. The E-DNA surface is highly accessible to sol-
vent, with waters in the major groove sitting on exposed faces
of the stacked nucleotides. We suggest that the geometry of the
waters and the stacked base pairs would promote the sponta-
neous deamination of 5-methylcytosine in the transition
mutation of dm5C-dG to dT-dA base pairs.

5-Methyldeoxycytidine (dm5C) is often considered the fifth
nucleotide of the genetic code. Prokaryotes use cytosine methy-

lation to distinguish parent from replicated daughter DNAs, and
host from viral DNAs1. In eukaryotes, dm5C has been implicated
in processes as varied as X-chromosome inactivation, genomic
imprinting, and gene inactivation2–4. The effect of cytosine
methylation on double helical DNA, therefore, has been of great
interest over the years. Cytosine methylation and bromination
have been shown to stabilize A-DNA5,6 and left handed 
Z-DNA7,8. However, neither A-DNA nor Z-DNA requires cyto-
sine methylation for its formation; therefore, methylation serves
to facilitate rather than induce these conformations. The ques-
tion is whether methylation can induce a unique structure.

Here, we show that the sequence d(GGCGCC)2 crystallizes as
standard B-DNA, while the sequences d(GGCGm5CC)2 and
d(GGCGBr5CC)2 form a new conformation, which we call 
E-DNA, that has structural characteristics of both B-DNA and 
A-DNA (Fig. 1a). The B-DNA and E-DNA sequences were crystal-
lized under nearly identical conditions indicating that, unlike 
A-DNA5, E-DNA does not require dehydration. Interestingly, the
sequence d(GGCGm5CC)2 crystallizes as E-DNA over two to three
weeks, but when allowed to crystallize for two to three months
forms a standard A-DNA double helix. Finally, we suggest that 
E-DNA may play a role in the transition mutation of dm5C-dG to
dT-dA base pairs in the cell.

B-DNA structure of d(GGCGCC)2

The sequence d(GGCGCC)2 was crystallized as B-DNA in the
presence of spermine hydrochloride (spermine4+) alone or with
cobalt hexamine (Co(NH3)6

3+) (Fig. 2a). In both crystal forms, the
DNA duplexes stack coaxially to form the continuous columns
seen previously in B-DNA crystals9. The deoxyriboses in the four
unique duplex structures determined here, three from the sper-
mine4+ form and one from the Co(NH3)6

3+ form, all fall into the
family of 2′-endo conformations of B-DNA. The helical parame-

Fig. 1 Comparing E-DNA with B-DNA and A-DNA. a, Views into (top) and down (bottom) the helix axes of 12-base pair models constructed from the
crystal structures of d(GGCGCC)2 as B-DNA, and d(GGCGm5CC)2 as E-DNA and as A-DNA. The phosphodeoxyribose backbones are traced by yellow rib-
bons. b, Helical parameters (calculated by CURVES 5.2; ref. 22) of hexanucleotide structures containing dC-dG, dm5C-dG, and dBr5C-dG base pairs as
B-DNA (green circles), A-DNA (red triangles), and E-DNA (blue squares). Parameters determined from the current structures are shown as filled sym-
bols, while those from the previously published A-DNA structures5 are open. Concentric ovals represent 1 and 2 standard deviations from the mean.
Parameters for A-DNA and B-DNA fibers are indicated by the boxed A and B, respectively.
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ters (Fig. 1b) show sequence dependent variations that deviate
from fiber B-DNA, but are all clearly standard B-DNA, even
though Co(NH3)6

3+ has been shown to promote the formation of
A-DNA in solution10. The polycations in the crystals act as the
molecular glue that holds the lattices together. One spermine4+

spans the major groove of two stacked duplexes, while a second
bridges the backbones of two unstacked duplexes in the sper-
mine4+ form. In contrast, the cobalt metal in the Co(NH3)6

3+ form
directly crosslinks the guanines of two symmetry related duplexes. 

E-DNA structure of d(GGCGm5CC)2 and d(GGCGBr5CC)2

The sequences d(GGCGm5CC)2 and d(GGCGBr5CC)2 were crys-
tallized from solutions that were nearly identical to the spermine4+

form of d(GGCGCC)2. The crystal structures of d(GGCGm5CC)2

and d(GGCGBr5CC)2 are nearly identical, consisting of right
handed antiparallel double helices (Fig. 2b). Viewed into the helix
(Fig. 1a), the structures appear to be variants of B-DNA with base
pairs lying perpendicular to, and extended along, the helix axis.
However, we see the deep major groove and shallow minor groove
that is associated with the 3′-endo deoxyribose sugar conforma-
tion of A-DNA. Looking down the helix, the backbone traces a
squared rather than a circular cylinder. The structure, therefore,
has features of both A-DNA and B-DNA; however, it is neither.
This new structure is called ‘E-DNA’ to recognize the extended
helix and the eccentric trace of the backbone.

A detailed analysis (Fig. 1b, Table 1) shows E-DNA to be distinct
from A-DNA and B-DNA. The slight negative inclination of the
base pairs is more like fiber B-DNA than even the B-DNA struc-
tures of d(GGCGCC)2. However, like A-DNA, the large negative

x-displacement places the helix axis in the major groove. The
eccentric backbone results from an even greater protrusion
of the modified cytosines away from the helix axis than in 
A-DNA, as is evident from the more negative x-displace-
ment. In addition, the shortened distance between phos-
phates of the modified (5.7 ± 0.2 Å) versus unmodified base
pairs (6.5 ± 0.3 Å) is comparable to differences between A-
DNA (5.8 ± 0.2 Å) and B-DNA (6.6 ± 0.3 Å). The average
rise is longer than that of B-DNA, and the average slide
between base pairs is larger than in A-DNA. Thus, E-DNA is
more extended and broader than A-DNA and B-DNA, and
shows variations associated with the modifications to the
cytosine bases.

The E-DNA crystal lattice has one terminal base pair of
the duplex sitting in the minor groove of a symmetry relat-
ed duplex, which is typical of A-DNA crystals5. The oppo-
site end of the duplex, however, is coaxially stacked, similar
to the d(GGCGCC)2 crystals. Therefore, rather than the
crystal interactions defining the conformation, it appears
that E-DNA defines a conglomerate crystal lattice.

Interestingly, it is the B-DNA type stacking interactions
that show the greatest lattice distortions to the E-DNA
structure. The stacked base pairs at these termini are dra-
matically underwound, with an average helical twist of
23.7°. The average helical twist estimated from the remain-
der of the nucleotides is equivalent to a helical repeat of
11.8 base pairs per turn, making E-DNA an underwound
structure relative to both A-DNA and B-DNA.

E-DNA is not a chimeric structure. Cis-platin, for exam-
ple, sits at a junction between B-DNA and A-DNA11, while
DNA/RNA hybrids have distinct A-RNA and B-DNA strands12.
These chimeric structures have the two conformations coexist-
ing in the same molecule. A-DNA and B-DNA have also been
shown to coexist as unique structures within a single crystal lat-
tice13, while the sequence d(CCGCCGGCGG)2 has been crystal-
lized as both A-DNA14 and B-DNA15. E-DNA, however, has
structural properties of both conformations, but cannot be read-
ily classified as either a variation of B-DNA or of A-DNA, or as a
chimera of the two. Finally, with its extended rise and large slide
between base pairs, E-DNA distinguishes itself from the interme-
diate structures of d(CCCCGGGG)2 (ref. 16) and d(CATGGGC-
CCATG)2 (ref. 17), both of which fall within the continuum
between B-DNA and A-DNA.

A-DNA structure of d(GGCGm5CC)2

The sequence d(GGCGm5CC)2 crystallized as standard A-DNA
from identical solutions that yielded E-DNA crystals of this same
sequence. The difference was that the A-DNA crystals of this
sequence (Fig. 2c) grew after a significantly longer period of time
(two to three months compared to two to three weeks for the 
E-DNA crystals). The asymmetric unit of the crystals was com-
posed of two complete A-DNA duplexes, and one duplex with one
terminal base pair melted. We could not accurately account for
this frayed end, and therefore, did not incorporate this model into
our analysis of the structure. The conformation obtained from
these ‘aged’ solutions had large positive inclination angles, nega-
tive x-displacements and negative slides, and short helical rises
between base pairs (Fig. 1b). These helical parameters, along with

a

b

c

Fig. 2 Electron density maps showing stereo views looking into the
major grooves of the B-, E-, and A-DNA structures. a, d(GGCGCC)2

with Co3+ (purple sphere) as B-DNA; b, d(GGCGm5CC)2 as E-DNA; 
c, d(GGCGm5CC)2 as A-DNA. The 2Fo - Fc maps are contoured at 1 σ.
This figure was rendered with Raster3D23.
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the 3′-endo sugar conformations, are characteristic of A-DNA.
Finally, the interduplex interactions were typical of hexanu-
cleotide A-DNA crystals5. In short, there was nothing that set this
crystal structure apart from other undistorted A-DNA structures.

E-DNA intermediate in the B-DNA to A-DNA transition
One of the truly unique results from this study is that a single
sequence, d(GGCGCC)2, has been crystallized as standard B-DNA
and A-DNA double helices, and also shown to form a novel struc-
ture, E-DNA, which is intermediate between the two. The require-
ment for methylation to induce A-DNA in this sequence is
consistent with previous observations that dm5C nucleotides
induce the transition from B-DNA to A-DNA5,6. The shorter peri-
od of time required to grow crystals of E-DNA from identical solu-
tions that eventually yielded A-DNA indicates that this
intermediate was kinetically trapped by crystallization. We show
here that the methyl group facilitates the conversion of the sugar
conformation from 2′-endo to 3′-endo, which is apparently the
rate-limiting step for the B-DNA to A-DNA transition. Thus, the
transition from B-DNA to A-DNA occurs through E-DNA as a
discrete intermediate, and, at least for the methylation induced
transition, this intermediate is elongated and underwound relative
to either B-DNA or A-DNA. The structural convolutions that lead
from B-DNA to E-DNA and finally to A-DNA are
apparent from the views into the major grooves of
the three crystal structures (Fig. 2). Crystal-
lization of the A-DNA structure appears to
require an additional loss in water activity that
would result from the longer equilibrium time
during crystal growth. This supports our con-
tention that E-DNA is more hydrated than A-
DNA in this sequence.

Solvent interactions in E-DNA
The deep major groove and shallow minor
groove, along with the relatively noninclined base
pairs result in a more exposed surface for E-DNA.

The solvent accessible surface area of a base pair in E-DNA
(288 Å2) is >3 Å2 more exposed than in A-DNA (285 Å2) or
B-DNA (284 Å2). A well-defined set of water molecules is
observed in the major groove of E-DNA, all hydrogen bond-
ed to, and in the plane of, the base pairs. However, the large
rise and slide between base pairs keep these waters from
forming a regular spine. Instead, the waters in E-DNA sit on
the exposed face of the adjacent stacked base pair (Fig. 3a).
The solvent structure in the minor groove is obscured by the
symmetry related duplex that sits against this groove.

E-DNA provides a structural rationale for the higher rate of
spontaneous deamination in methylated cytosines (Fig. 3b), which
leads to the transition mutation of dm5C-dG to dT-dA base pairs.
The rate of this mutation is 21-fold higher when the cytosine bases
in duplex DNAs are methylated18. We compared the structure of
the central d(CpG) step and the associated waters of d(GGCGCC)2

as B-DNA and d(GGCGm5CC)2 and d(GGCGBr5CC)2 as E-DNA
to illustrate how conformation rather than specific methylation
would facilitate the deamination reaction. The CpG step of each
structure has a water molecule hydrogen bonded to the basic N7
nitrogen and lying in the plane of the guanine base. The waters in
the B-DNA dinucleotides are located 4.5 Å to >6 Å from the edges
of the stacked cytosines (Fig. 3a). However, the shifted base pairs in
E-DNA position the solvent molecules just above and within
3.8–4.2 Å of the exposed C4 carbon of the pyrimidine base. In addi-
tion, these waters in E-DNA are nearly perpendicular to the cyto-
sine base plane, a geometry that would facilitate nucleophilic attack
of the aromatic ring. When the cytosine of the d(CpG) step in 
E-DNA is modeled as the hemiaminal intermediate of the deami-
nation reaction, the resulting hydroxyl oxygen is 2.0–3.0 Å from the
N7 nitrogen and in the plane of the guanine base (Fig. 3c). The
CpG dinucleotide in this E-DNA model, therefore, can potentially
stabilize the hemiaminal intermediate through hydrogen bonds.

b

Fig. 3 Waters in the CpG dinucleotides of B-DNA and E-DNA. 
a, Stereo view of waters (gold spheres) hydrogen bonded (broken
lines) to the guanine at the CpG steps in d(GGCGCC)2 as B-DNA,
and in d(GGCGm5CC)2 and d(GGCGBr5CC)2 as E-DNA. The waters
are overlaid relative to the guanine N7 nitrogen of an average
structure built from three unique CpG steps found in each confor-
mation (the C4 carbon of the cytosine base is colored black). 
b, Mechanism for the spontaneous deamination of cytosine to
uracil24. The nucleophilic attack of a water molecule at the C4 car-
bon forms a hemiaminal intermediate. Release of ammonia results
in a tautomer, which subsequently rearranges to uracil. c, Model
of the hemiaminal intermediate in B-DNA and E-DNA. The hemi-
aminal intermediate at the CpG step was modeled by adding a
hydroxyl group to the C4 carbon (colored black) of the cytosine
base, followed by geometry optimization using the AMBER25 force
field as implemented in the program InsightII (Biosym/MSI). The
starting positions of the waters and the starting cytosine base are
shown as transparent overlays.

Table 1 Average helical parameters1 for hexanucleotides containing dC-dG,
dm5C-dG, and dBr2C-dG base pairs as A-DNA2, B-DNA, and E-DNA

Parameter A-DNA2 B-DNA E-DNA
Helical twist (°) 31.5 ± 3.6 34.8 ± 3.5 29.2 ± 4.5      (30.6 ± 3.5)
Rise (z-displacement) (Å) 2.8 ± 0.32 3.30 ± 0.28 3.56 ± 0.36    (3.71 ± 0.19)
Slide (Å) -1.99 ± 0.27 -0.63 ± 0.57 -2.32 ± 0.17  (-2.39 ± 0.13)
Roll angle (°) 9.0 ± 4.7 2.9 ± 4.0 2.1 ± 4.4       (0.9 ± 4.0)
x-Displacement (Å) -4.73 ± 0.37 -1.60 ± 0.75 -3.38 ± 0.51  (-3.43 ± 0.55)
Inclination angle (°) 15.2 ± 4.3 7.4 ± 5.7 -4.6 ± 4.1       (-6.1 ± 1.9)

1Mean values are shown ±1 standard deviation. Values in parentheses were calculated for
E-DNA in the absence of the stacked terminal base pairs.
2From ref. 5.
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Methods
Crystallization and structure determination. The sequence
d(GGCGCC)2 was crystallized from solutions containing 0.7 mM
DNA, 25 mM sodium cacodylate buffer (pH 6), 0.8 mM MgCl2, and
0.75 mM spermine tetrahydrochloride equilibrated against a reser-
voir of 15% (v/v) 2-methyl-2,4-pentanediol (MPD) and from this
same solution with 1–2 mM Co(NH3)6

3+ added. The cobalt form
(Table 2) was solved using two separate B-DNA d(GGC/GCC) duplex-
es in a directed real space translation/rotation/rigid body search (X-
PLOR 3.851 (ref. 19) script written in this lab). The refined structure
was then used to solve the structures of three stacked B-DNA
duplexes in the spermine crystal form. The solvent content of the
spermine form is ∼ 70% greater than typical B-DNA crystals20, and
could not be accurately modeled in the structure. This explains the
moderate resolution and relatively high R-values of this structure.

The sequences d(GGCGm5CC)2 and d(GGCGBr5CC)2 were crystallized
from solutions containing 0.7 mM DNA, 25 mM sodium cacodylate
(pH 6), 0.8 mM MgCl2, and 0.1–0.5 mM spermine tetrahydrochloride
equilibrated against a reservoir of 15–20% (v/v) MPD. The structure of
the brominated sequence was solved first by molecular replacement
with the program AMoRe21, using the central four base pairs of an
ideal A-DNA structure as the search model. This was subsequently
subjected to simulated annealing, followed by hand fitting of the ter-
minal base pairs to the residual electron density observed in an Fo - Fc

difference map. The refined brominated model was used as a search
model to solve the structure of the methylated sequence.

A-DNA crystals of d(GGCGm5CC)2 that grew after two to three
months from the same set of crystallization solutions and identical
conditions that yielded E-DNA crystals were solved by molecular
replacement using the A-DNA structure of d(GCCGGC)2

5 in the pro-
gram AMoRe21.

Coordinates. Coordinates have been deposited in the Protein Data
Bank (accession codes: 1F6C for the spermine4+ and 1F69 for the
Co(NH3)6

3+ forms of d(GGCGCC)2 as B-DNA; 1F6I for d(GGCGm5CC)2

and 1F6J for d(GGCGBr5CC)2 as E-DNA; and 1F6E for d(GGCGm5CC)2

as A-DNA). 

Acknowledgments
We thank B.H.M. Mooers and the P.A. Karplus laboratory for helpful discussion,
and K.E. van Holde, C.K. Mathews, and W.C. Johnson, Jr. for reading this
manuscript. This work was supported by the National Science Foundation, the

Oregon American Cancer Society, and the Environmental Heath Science Center at
OSU. X-ray facilities were funded in part by the M.J. Murdock Charitable Trust.

Correspondence should be addressed to P.S.H. email: hops@ucs.orst.edu

Received 2 March, 2000; accepted14 June, 2000.

1. Noyer-Weidner, M. & Trautner, T.A. In DNA methylation: molecular biology and
biological significance. (eds, Jost, J.P. & Saluz, H.P.), 39–108 (Birkhäuser Verlag,
Boston; 1993).

2. Singer-Sam, J. & Riggs, A.D. In DNA methylation: molecular biology and
biological significance. (eds, Jost, J.P. & Saluz, H.P.) 358–384 (Birkhäuser Verlag,
Boston; 1993).

3. Sasaki, H., Allen, N.D. & Surani, M.A. In DNA Methylation: Molecular Biology and
Biological Significance. (eds Jost, J.P. & Saluz, H.P.) 469–486 (Birkhäuser Verlag,
Boston, 1993).

4. Antequera, F. & Bird, A. In DNA methylation: molecular biology and biological
significance. (eds, Jost, J.P. & Saluz, H.P.), 169–185 (Birkhäuser Verlag, Boston; 1993).

5. Mooers, B.H.M., Schroth, G.P., Baxter, W.W. & Ho, P.S. J. Mol. Biol. 249, 772–784
(1995).

6. Frederick, C.A. et al. Biopolymers 26, S145–S160 (1987). 
7. Behe, M. & Felsenfeld, G. Proc. Natl Acad. Sci. USA 78, 1619–1623 (1981).
8. Fujii, S., Wang, A.H.-J., van der Marel, G., van Boom, J.H. & Rich, A. Nucleic Acids

Res. 10, 7879–7892 (1982).
9. Timsit, Y. & Moras, D. Methods Enzymol. 211, 409–429 (1992).

10. Xu, Q., Shoemaker, R.K. & Braunlin, W.H. Biophys. J. 65, 1039–1049 (1993).
11. Takahara, P.M., Rosenzweig, A.C., Frederick, C.A. & Lippard, S.J. Nature 377,

649–652 (1995).
12. Arnott, S., Chandrasekaran, R., Millane, R.P. & Park, H.-S. J. Mol. Biol. 188,

631–640 (1986).
13. Doucet, J., Benoit, J.-P., Cruse, W.B.T., Prange, T. & Kennard, O. Nature 337,

190–192 (1989).
14. Mayer-Jung, C., Moras, D. & Timsit, Y. EMBO J. 17, 2709–2718 (1998).
15. Timsit, Y. & Moras, D. EMBO J. 13, 2737–2746 (1994).
16. Wang, A.H.-J., Fujii, S., van Boom, J.H. and Rich, A. Proc. Natl. Acad. Sci. USA 79,

3968–3972 (1982).
17. Ng, H.-L., Kopka, M.L., & Dickerson, R.E. Proc. Natl. Acad. Sci. USA 97, 2035–2039

(2000).
18. Zhang, X. & Mathews, C.K. J. Biol. Chem. 269, 7066–7069 (1994).
19. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR .

(Yale University Press, New Haven, Connecticut; 1992).
20. Dickerson, R.E. Methods Enzymol. 211, 67–111 (1992).
21. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).
22. Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 655–667 (1989).
23. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).
24. Carter, C.W., Jr. Biochimie 77, 92–98 (1995).
25. Weiner, S.J. et al. J. Am. Chem. Soc. 106, 765–784 (1984).
26. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).
27. Pflugrath, J.W. Acta Crystallogr. D 55, 1718–1725 (1999).
28. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A.T. & Berman, H.M. Acta

Crystallogr. D 52, 57–64 (1996).
29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).
30. Brünger, A.T. Nature 355, 472–475 (1992).

Table 2 Data collection and refinement statistics

d(GGCGCC)2 d(GGCGCC)2 d(GGCGm5CC)2 d(GGCGBr5CC)2 d(GGCGm5CC)2

+ Co(NH3)6
3+ + Spermine4+ E-DNA E-DNA A-DNA

Data collection1

Space group P4122 P41212 P43212 P43212 C2221

Unit cell lengths (Å) a = b = 42.6, a = b = 71.5, a = b = 62.1, a = b = 60.4, a = 37.1, b = 46.8,
c = 63.3 c = 59.6 c = 24.3 c = 24.7 c = 110.7

Resolution (Å) 42.59–2.6 71.5–2.7 20.0–2.2 60.4–2.25 20.0–2.0
Total reflections (unique) 20,150 (2,026) 32,859 (4,551) 23,113 (2,571) 31,302 (2,393) 27,952 (6,053)
Completeness (%)2 99.9 (99.9) 98.8 (96.6) 95.7 (91.6) 99.9 (99.9) 88.6 (62.9)
Rmerge (%)2,3 6.1 (25.1) 5.7 (39.5) 4.9 (51.3) 5.0 (34.7) 5.5 (38.4)
Refinement
Resolution (Å) 8.0–2.6 8.0–2.7 8.0–2.2 8.0–2.25 8.0–2.0
Rcryst (Rfree) (%)4 20.5 (27.9) 22.6 (28.8) 21.0 (27.3) 19.3 (25.6) 20.5 (24.8)
DNA (solvent) atoms 240 (22) 600 (37) 242 (29) 242 (28) 693 (126)
R.m.s. deviations

Bond lengths (Å) 0.005 0.006 0.007 0.004 0.003
Bond angles (°) 1.095 0.981 0.903 0.674 0.811

1X-ray diffraction data were collected at room temperature using CuKα radiation from a Rigaku RUH3R generator and an R-AXIS IV image plate
detector, and reduced using the programs Denzo and Scalepack from the HKL package26 and D*Trek27.
2Values in parentheses refer to the highest resolution shell.
3Rmerge = ΣhklΣi|Ihkl,i - <I>hkl| / ΣhklΣi|Ihkl,i| where Ihkl is the intensity of a reflection and <I>hkl is the average of all observations of this reflection and its sym-
metry equivalents.
4The B-DNA and E-DNA structures were refined with the program X-PLOR 3.851 (ref. 19), incorporating nucleic acid specific parameters28. The A-DNA
structure of d(GGCGm5CC)2 was refined using CNS29. Rcryst = Σhkl|Fo - kFc| / Σhkl|Fo|. Rfree = Rcryst with 10% of the reflections that were not used in refinement30.
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