Why do we care about biomolecules?

Why do we use NMR?

Q: How do we take a spectrum and derive structure and function from it?

A: Take signal features, and relate them back to the originating spin

What is an assignment?

Associate a given signal/frequency back to the originating spin

Every atom with spin has a Larmor frequency

Unique features of each signal Chemical Shift & Linewidth

The exact resonance frequency (chemical shift) is determined by the <u>electronic environment</u> of the nucleus

Critical features influence spin frequencies

Spins start at a given frequency based on its gyromagnetic ratio

- Local chemical bonds influence resonance frequency
- Sample solvent conditions influence frequency
- Tertiary structure leads to increased dispersion of resonances.
- Ligand binding changes spin properties

Every atom in a protein is chemically unique, thus every atom has a unique assignment!

Each atom has a unique chemical environment

Leucine (L)

Regions of the ¹H NMR Spectrum

What would the unfolded protein look like?

Proteins Have Too Many Signals! ¹H NMR Spectrum of Ubiquitin

Resolve resonances by multi-dimensional experiments

Solutions to the Challenges of Too Many Signals

- Increase dimensionality of spectra to better resolve signals: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- Higher dimensions link spins to one other

Scalar and Dipolar Coupling

Coupling of nuclei gives information on structure

2D NMR: Coupling is the Key

The 2D NMR Spectrum

The Power of 2D NMR: Resolving Overlapping Signals

2 signals overlapped

2 cross peaks resolved

2D

Basic Strategy to Assign Resonances

- Identify resonances for each residue (scalar)
 T G L S S R G
- 2. Put residues in order

Leucine (L)

Homonuclear 2D Expts

COSY: One coupling

R-COSY: Add A 2nd Coupling

DR-COSY: Add A 3rd Coupling

TOCSY: All Coupled Spins

Homonuclear 2D Expts

Limitations of Homonuclear NMR

Nuclei are not all mutually coupled

Each amino acid gives rise to an independent NMR sub-spectrum, which is much simpler than the complete protein spectrum

Basic Strategy to Assign Resonances

1. Identify resonances for each residue (scalar) T G L S S R G

2. Put residues in order

Leucine (L)

Solutions to the Challenges

- Most abundant nitrogens, carbons, and oxygens do not provide NMR-viable signal
- Detect signals from heteronuclei (non-hydrogens)
- Isotopically enrich protein sample with ¹³C, ¹⁵N, or ²H to overcome low natural abundance

Intrinsic Sensitivity of Nuclei

Nucleus	γ	% Natural Abundance	Relative Sensitivity
${}^{1}\mathbf{H}$	2.7 x 10 ⁸	99.98	1.0
¹³ C	6.7 x 10 ⁷	1.11	0.004
15 _N	-2.7 x 10 ⁷	0.36	0.0004
³¹ P	1.1 x 10 ⁸	100	0.5

Prepare samples enriched in these nuclei

Double-Resonance Experiments Increases Resolution/Information Content

Acronyms For Basic Experiments Differ Only By The Nature Of Mixing

	<u>Homonuclear</u>	<u>Heteronuclear</u>
Scalar Coupling	COSY	HSQC
H _A H _B I↑ ↓I	TOCSY	Hetero-TOCSY
	Multiple Quantum	HMQC
Dipolar Coupling	NOESY	NOESY-HSQC
		NOESY-HMQC

Higher Dimensional NMR: Built on the 2D Principle

TOCSY: All Coupled Spins

¹⁵N Dispersed ¹H-¹H TOCSY

Heteronuclear Side Chain Experiments

Multiple redundancies increase reliability

Basic Strategy to Assign Resonances in a Protein

1. Identify resonances for each residue (scalar) TGLSSRG

2. Put residues in order

Need a coupling to cross the carbonyl!

Heteronuclear Triple-Resonance Backbone Experiments

Pairs of Experiments Distinguishes Intra-residue from Inter-residue

<u>HNCA</u>

> H(t₃), N(t₂), CA(t₁)

▶2 peaks- Intra + Inter

➢ Mixing from N→Ca occurs over 1 bond to same Ca and over 2 bonds to adjacent Ca

HN(CO)CA

> H(t₃), N(t₂), CA(t₁)

➤1 peak- Inter only

➢ Mixing from N→Ca occurs
 ONLY over 2 bonds to adjacent
 Ca

Equivalent Experiments Can be run in either direction

HNCACB

 \succ H(t₃), N(t₂), CA and CB(t₁)

➢ Mixing from N→Ca occurs over 1 bond to same Ca and over 2 bonds to adjacent Ca

CBCANH

 \succ CB and CA(t₁), N(t₂), H(t₃)

➢ Mixing from N→Ca occurs over 1 bond to same Ca and over 2 bonds to adjacent Ca