

Jens Meiler

Center for Structural Biology Departments of Chemistry, Pharmacology, and Biomedical Informatics

Central Dogma of Evolution

Central Dogma of Molecular Biology

Central Dogma of Structural Biology

Protein Sequence and Structure Data

- Genbank
 - ~5,000,000 sequences
- Protein Databank
 - ~40,000 structures

Structural Biology After the Human Genome Project

Sequence versus Structure

Structural Biology After the Human **Genome Project**

Vol. 291 No. 5507 Pages 1145–1434 \$9

Membrane Proteins and Large Macromolecular Assemblies

(Inverse) Protein Folding Problem Holy Grail of Comp. Struct. Biology

- Given a protein's AA sequence, what is its 3-dimensional fold , and how does it get there?
- Assume 100 conformations for each amino acid in a 100 amino acid protein ⇒ 10²⁰⁰ possible conformations!
- Cyrus Levinthal's paradox of protein folding,1968.

- Given a protein fold, which primary sequence(s) fold into it?
- Assume a total of 100 conformations for all 20 natural occurring amino acids side chains in a 100 amino acid protein ⇒ 10²⁰⁰ possible conformations!
- Earth is less than 10¹⁰ years old.

Hydrophobic Amino Acids

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Hydrophylic Amino Acids

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

16 January 2009

Hydrogen Bonding Capabilities of Amino Acids

Properties of Amino Acids in Numbers

 Table 1
 Amino acid parameter sets

Name	Ξa	α_p	$\upsilon_v^{\ c}$	π^{d}	Ie	$\boldsymbol{\alpha}^{f}$	β^{g}
ALA	1.28	0.05	1.00	0.31	6.11	0.42	0.23
GLY	0.00	0.00	0.00	0.00	6.07	0.13	0.15
VAL	3.67	0.14	3.00	1.22	6.02	0.27	0.49
LEU	2.59	0.19	4.00	1.70	6.04	0.39	0.31
ILE	4.19	0.19	4.00	1.80	6.04	0.30	0.45
PHE	2.94	0.29	5.89	1.79	5.67	0.30	0.38
TYR	2.94	0.30	6.47	0.96	5.66	0.25	0.41
TRP	3.21	0.41	8.08	2.25	5.94	0.32	0.42
THR	3.03	0.11	2.60	0.26	5.60	0.21	0.36
SER	1.31	0.06	1.60	-0.04	5.70	0.20	0.28
ARG	2.34	0.29	6.13	-1.01	10.74	0.36	0.25
LYS	1.89	0.22	4.77	-0.99	9.99	0.32	0.27
HIS	2.99	0.23	4.66	0.13	7.69	0.27	0.30
ASP	1.60	0.11	2.78	-0.77	2.95	0.25	0.20
GLU	1.56	0.15	3.78	-0.64	3.09	0.42	0.21
ASN	1.60	0.13	2.95	-0.60	6.52	0.21	0.22
GLN	1.56	0.18	3.95	-0.22	5.65	0.36	0.25
MET	2.35	0.22	4.43	1.23	5.71	0.38	0.32
PRO	2.67	0.00	2.72	0.72	6.80	0.13	0.34
CYS	1.77	0.13	2.43	1.54	6.35	0.17	0.41

16 January 2009

Stereochemistry of amino acids and Planarity of peptide bond

16 January 2009

Two Backbone Degrees of Freedom per Amino Acid

Zero toFour Sidechain Degrees of Freedom – Two on Average

Important bonds for protein folding and stability

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

16 January 2009

Protein structure depends on amino acid sequence and interactions

16 January 2009

Secondary Structure: Build from **Backbone Hydrogen Bonds**

 $\succ \alpha$ -Helix:

Periodicity = 3.6Rise = 1.5 ÅPitch = 5.4Å

- $\succ \beta$ -Sheet:
 - Periodicity = 2Translation = 3.4Å Distance = 5.4Å

α -Helix

- Most abundant secondary structure
- > 3.6 amino acids per turn
- Hydrogen bond formed between every fourth reside
- Average length: 10 amino acids, or 3 turns
- Varies from 5 to 40 amino acids

β-Sheet

- 5-10 amino acids in one portion of the chain with another 5-10 farther down the chain
- Interacting regions may be adjacent with a short loop, or far apart

Parallel β -sheet

Anti-Parallel β-sheet

Sheet the Ramachandran Plot

The Ramachandran Plot.

Tertiary structure: Assembly of Secondary Structure in Domains

(a) Predominantly α helix

Immunoglobulin, V₂ domain (b) Predominantly β sheet

<u>Domains</u>

Discrete locally folded units of tertiary structure, often containing regions of alpha helix and beta sheets packed together compactly, typically 50-350 aa in length and usually has a specific function.

Hexokinase, domain 2

(c) Mixed α helix and β sheet

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Tertiary Structure: Sheet-Sheet Packing - The Creek Key motif

Tertiary Structure: Helix-Sheet Packing – The Rossman Fold

The most regular and common domain structures consist of repeating β-α-β units. The outer layer of the structure is composed of α helices packing against a central core of parallel β sheets. These folds are called β/α/β. This motif is always right-handed

The right-handed beta-alpha-beta unit. The helix lies above the plane of the strands.

The Rossman fold

Tertiary Structure: Helix-Sheet Packing – The Barrel Fold

This structural motif was first observed in the X-ray structure of triosephosphate isomerase (TIM) so it is also called a TIM fold. (Banner et al., Nature 255, 609-614 (1975).

Protein Tertiary Structure is Tied to Function

FOLDING binding site (A) folded protein (B)

Protein Folding

General Scheme of Protein Structure Prediction

Fold Recognition

- Screens all structures of the PDB to identify possible template for modeling sequence of interest
- Template can be identified by sequence similarity (Homolog) or by structural similarity (Threading)
- Often predicted secondary structure used as input in addition to sequence
- Often multiple methods are applied to arrive at a consensus prediction with increased confidence
- e.g. BioInfo server uses up to 32 other technologies: <u>www.bioinfo.pl</u>

Secondary Structure Prediction

Local influences captured by protein primary structure:

Rost, B. and Sander, C. (1993) *PNAS*, 90, 7558 Jones, D. T. (1999) *J. Mol. Biol.*, 292, 195-202. Meiler, J., et. al. (2001) *J. Mol. Model.*, 7, 360-369. Non-local influences captured by protein tertiary structure?!

Meiler, J. and Baker, D. (2003) *PNAS*, 100, 12105.

Coupled Prediction of Secondary and Tertiary Structure

Meiler, J., et. al. (2001) J. Mol. Model., 7, 360-369.

Meiler, J. and Baker, D. (2003) *PNAS*, 100, 12105.

General Scheme of Protein Structure Prediction

Local Sequence Bias – Rapid Approximation of Local Interactions

annation (A	"tota	1× 15
month the the	, And	to the
where we have	Lage .	the star
hat were store	nogen	B -73
How when the state	Xelect	\$ M2
hat me in	states.	St tung
survey with the	248	for my
when the suit	top	the star
which and the	1 the state	Showing
Hand the state	redigt	33 MB
+ marine tak	state.	the A
when such thank	1 galge	R R
showed the work	state	18 22
where show still	Mark -	11 F F S
super that super year	the state	I make
Andrew The Same	1 the	N 199
French Fundaling	state	S. Most
mand the second that	Lefter .	HE wanty
the even the	77. A. F.	E state
with the End	Set.	22 13
when the state	Sept.	Sy Mr.
phone the Enter	rester	Et 15
more the sunt	Set.	St 19
munament 342	17 Art	B. MAY
who we have been a	1 Art	24 13
Justin mit Age	2 april 2	St the

- While not every protein fold is present in the protein databank, all possible conformations of small peptides are!
- Approximate local interactions using the distribution of conformations seen for similar sequences in known protein structures
- For each sequence window, select fragments that represent the conformations sampled during folding

Non-local Interactions Govern Protein Folding Process

- Monte Carlo simulated annealing assembly of fragments
- Statistically-derived potential function
 - Steric overlap (vdw interactions)
 - Residue environment (solvation)
 - Pairwise interactions (electrostatics)
 - Strand pairing (hydrogen bonding)
 - Compactness (solvation)
- Simplified protein representation; one centroid per amino acid side chain

Native-like Protein Models Form Large Clusters

- The free energy minimum corresponds (usually) to the native protein fold
- Its depth is obscured because of the simplified energy approximation
- However, the width of the funnel leading to the free energy minimum of the native protein fold is well preserved

Ν
Sampling and Scoring for Protein Folding Simulation

- Local Sequence Bias
 - Approximate local interactions using the distribution of conformations seen for similar sequences in known protein structures
- Monte Carlo simulations
 - Select broadest minima using cluster analysis

Simons, K. T., Kooperberg, C., Huang, E. and Baker, D. (1997) *J. Mol. Biol.*, 268, 209-225.

- Energy evaluation of non-local interactions using knowledge-based energy function
 - Steric overlap
 - Residue environment
 - Pair wise interactions
 - Strand pairing
 - Compactness
 - Secondary Structure Packing

16 January 2009

Major Challenges in the Field of Protein Structure Prediction

- Determination of fold for new fold targets of large size, complex topology, or membrane proteins

 Refinement of *de novo* and comparative models to experimental resolution

Critical Assessment of Techniques for Protein Structure Prediction

- CASP was established in 1994.
- Biyearly experiment to assess progress in the field of Protein Structure Prediction.
- Blind prediction of protein structures from their sequence.
- Sequences of "soon to be solved" proteins are submitted by NMR and X-ray crystallography groups during the summer.
- 200 prediction teams from 24 countries in CASP6 (2004) meet in December in Asilomar to discuss the results.
- 90 targets in CASP6 (2004) in three categories: easy/hard fold recognition and new fold
- Current Review: Moult, J., *Curr Opin Struct Biol*, **2005**.

T135 Hypothetical Protein

Length 106, CQ-30, 83 residues at 3.9Å

Contact Order

P

average sequence separation of two amino acids that are in contact

16 January 2009 ettingen - 090502

Correlation of Folding Rate and Contact Order

Bonneau, R., Ruczinski, I., Tsai, J. and Baker, D. (2002) *Protein Sci*, 11, 1937-1944.

CASP4 results

Bonneau, R., Ruczinski, I., Tsai, J. and Baker, D. (2002) *Protein Sci*, 11, 1937-1944.

16 January 2009 ettingen - 090502

General Scheme of Protein Structure Prediction

Comparative Modeling – Build Model based on an Existing Structure

Loop Closure Problem

Input

- 2 Anchor residues
- Length of missing fragment
- Output
 - A small number of candidate structures for missing fragment

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

A three-link planar arm has at most two closed loop conformations.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

Find the ensemble of conformations of a robotic arm, or manipulator, such that the poses of the first and last link of the arm remain fixed.

The Molecular Loop Closure Problem and the Degrees of Freedom (DOF)

- The molecular loop closure problem is overconstrained for fewer than six DOF, and
- underconstrained for more than six DOF.
- A molecular loop closure problem with more than six DOF has an infinite number of solutions.
- A molecular loop closure problem with six DOF has at most 16 solutions.

DOFs in the Protein Backbone

16 January 2009

The Tripeptide Problem

Accuracy of homology models

16 January 2009

General Scheme of Protein Structure Prediction

Sidechain Degrees of Freedom

All Likely Side Chain Conformations are Present in the Protein Databank

Lysine has four side chain χ-angles

"Rotamer" Libraries Encompass all Likely Side Chain Conformations

			No. χ ₁	No.	р	σ	p χ ₁	σ	χ ₁	σ	χ2	σ
SER 1 O	0	0	4125	4125	46.61	0.43	100.00	0.00	65.0	10.7		
SER 2 O	0	0	2059	2059	23.27	0.37	100.00	0.00	179.6	11.7		
SER 3 O	0	0	2665	2665	30.12	0.40	100.00	0.00	-64.2	11.0		
THR 1 O	Ο	0	4165	4165	48.38	0.44	100.00	0.00	61.1	8.8		
THR 2 O	0	0	686	686	7.98	0.24	100.00	0.00	-173.3	12.8		
THR 3 O	0	0	3757	3757	43.64	0.44	100.00	0.00	-60.4	8.2		
TRP 1 1	0	0	337	215	9.56	0.51	63.62	2.13	61.7	9.7	-90.9	9.4
TRP 1 2	0	0	337	16	0.74	0.15	4.92	0.96	65.6	7.5	-16.7	40.9
TRP 1 3	0	0	337	106	4.73	0.36	31.47	2.06	59.4	12.0	88.2	10.1
TRP 2 1	0	0	786	359	15.94	0.63	45.64	1.45	-178.4	12.5	-104.1	15.1
TRP 2 2	0	0	786	139	6.19	0.41	17.72	1.11	-175.5	12.4	18.2	31.0
TRP 2 3	0	0	786	288	12.80	0.57	36.63	1.40	179.8	8.8	84.8	9.7
TRP 3 1	0	0	1127	106	4.73	0.36	9.45	0.71	-70.4	13.2	-91.4	15.4
TRP 3 2	0	0	1127	303	13.46	0.59	26.90	1.08	-68.5	9.9	-2.5	26.8
TRP 3 3	0	0	1127	718	31.86	0.80	63.66	1.17	-67.4	11.3	99.8	16.4

Dunbrack, R. L.; Cohen, F. E. "Bayesian statistical analysis of protein side-chain rotamer preferences." *Protein Sci.* **1997, 6, 1661-1681.**

16 January 2009

Sampling and Scoring for Side Chain Repacking and Design

Simulated Annealing Monte Carlo energy minimization

Dahiyat, B. I. and Mayo, S. L. (1997) *Science*, 278, 82-7 Dunbrack, R. L., Jr. and Karplus, M. (1993) *J Mol Biol*, 230, 543-74. Kuhlman, B., et. al. (2003) *Science*, 302, 1364-1368.

Refinement Cycle with Side Chain Repacking and All Atom Minimization

CASP target T0281 and other Benchmark Examples

1.6Å Ca-RMSD blind structure prediction for CASP6 target T0281, hypothetical protein from Thermus thermophilus Hb8. Superposition of our submitted model for this target in CASP6 (blue) with the crystal structure (red; PDB code 1whz)

16 January 2009

Benchmark results

ID	Length	%a	%β	RMS Ca	SD core	Protein
1b72A 1shfA 1tif_ 2reb_2 1r69_ 1csp_ 1di2A_ 1di2A_ 1n0uA4 1mla_2 1af7 1ogwA_ 1dcjA_ 1dtjA_	49 59 59 60 61 67 69 69 70 72 72 72 72 73 74	69 5 22 61 63 4 46 43 34 72 26 31 39	0 40 37 20 0 53 33 24 37 0 33 27 27	0.8 10.8 4.1 1.2 1.2 4.7 2.6 9.9 8.4 10.1 1.0 2.5 1.0	0.8 8.5 2.3 0.9 1.5 4.2 2.2 8.1 7.3 7.9 1.0 2.2 0.8	Hox-B1 homeobox protein Fyn tyrosine kinase IF3-N RecA 434 repressor Cold-shock protein RNA binding protein A Elongation factor 2 Malonyl-CoA ACP transacylase Cher domain 1 Ubiquitin Yhhp KH domain of Nova-2
1o2fB_ 1mkyA3 1tig_	77 81 88	38 32 35	27 24 35	10.1 3.2 3.5	8.7 3.6 3.4	Glucose-permease IIBC Enga IF3-C

16 January 2009

Combining Strengths: Building Accurate Models from Sparse Data

16 January 2009

RosettaNMR: Usage of CSs, NOEs, and RDCs

- NMR data are used *in addition* to the Local Sequence Bias
 - CS derived dihedral angle restrictions (via TALOS)
 - Local NOE distance restraints
 - RDC orientation restraints

- NMR data are used *in addition* to energy evaluation of non-local Interactions
 - Long-range NOE distance restraints
 - RDC orientation restraints

Bowers, P. M.; Strauss, C. E. M.; Baker, D., *J. Biomol. NMR* **2000**, 18, 311-318. Rohl, C.; Baker, D., *J. Am. Chem. Soc.* **2002**, 124, (11), 2723-2729.

RosettaNMR: High-Resolution from "one" Restraint per Amino Acid

Bowers, P. M.; Strauss, C. E. M.; Baker, D., *J. Biomol. NMR* **2000**, 18, 311-318. Rohl, C.; Baker, D., *J. Am. Chem. Soc.* **2002**, 124, (11), 2723-2729.

Protein Structure Elucidation with NMR Spectroscopy

Fold Determination and High-Resolution Model Refinement

16 January 2009

1ubi_ initial model

1ubi_ Refinement 1st Step

1ubi_ Refinement 2nd Step

1ubi_ Refinement 3rd Step

© Jens Meiler

1ubi_ Refinement 4th Step

1ubi_ Refinement 5th Step

© Jens Meiler

Backbone RMSD is 0.6Å

Meiler, J. and Baker, D. (2003) *PNAS*, 100, 15404-15409.

16 January 2009

All Core Amino Acids have Correct Side Chain Conformation

Meiler, J. and Baker, D. (2003) PNAS, 100, 15404-15409.

16 January 2009

Structure Elucidation of Lysozyme from 25 Experimental EPR Distances

 Thanks to Hassane Mchaourab and his lab for experimental data

16 January 2009

25 Experimental Distance Restraints

- Restraint: $(d_{SL-SL} \sigma_{SL-SL} 10\text{\AA}) \le d_{CB-CB} \le (d_{SL-SL} + \sigma_{SL-SL})$
- Harmonic penal⁺ function

Influence of Experimental Data on Sampling and Model Quality

RMSD histogram

16 January 2009

Influence of Experimental Data on Sampling and Model Quality

RMSD histogram

С

16 January 2009

High Resolution Energy Refinement

Lowest scoring ~11,000 models out of 500,000 were refined

Backbone RMSD is 0.96Å

16 January 2009

All but Two Core Amino Acids have **Correct Side Chain Conformation**

Alexander, N.; Al-Mestarihi, A.; Bortolus, M.; McHaourab, H.; Meiler, J. "De Novo **High-Resolution Protein Structure** Determination from Sparse Spin-Labeling EPR Data" Structure 2008, 16, 181-95.

16 January 2009

Adenovirus Protein IIIa – A Novel Topology?

Saban, S. D.; Silvestry, M.; Nemerow, G. R.; Stewart, P. L., J Virol 2006, 80, (24), 12049-59.

16 January 2009

Number of Possible Placements of y Helices in x Density Rods

Secondary structure prediction with y helices

EM map with x density rods

```
n = \max(x, y) \quad \| \quad k = \min(x, y)
```

permutations = k!

orientations = 2^k

combinations = n!/k!(n-k)!

total = $2^{k} n!/(n-k)!$ || 3 helices and 2 densities: $2^{2}3!/(3-2)! = 24$

Size of Search Space Grows Exponentially

- About 10¹⁷ possible placements for number of possible placements protein IIIa
- Sample one per second and you are done in 4•10⁹ years
- This is about the age of the earth

number of helices and density rods

Monte Carlo Assembly Animation Start

Monte Carlo Assembly Animation Step 1 :: Score 0

Monte Carlo Assembly Animation Step 2 :: Score –0.4

Monte Carlo Assembly Animation Step 3 :: Score –0.7

Monte Carlo Assembly Animation Step 4 :: Score –1.5

step	4
move	add
length check	1
loop check	<i>\</i>
move accepted ?	<i>~</i>
score after move	- 1.5

Monte Carlo Assembly Animation Step 5 :: Score –1.5

step	5		
move	move		
length check	×		
loop check			
move accepted ?	×		
score after move	- 1.5		

Monte Carlo Assembly Animation Reject :: Score –1.5

Monte Carlo Assembly Animation Step 6 :: Score –1.5

Monte Carlo Assembly Animation Reject :: Score –1.5

Monte Carlo Assembly Animation Step 7 :: Score –2.5

Monte Carlo Assembly Animation Step 8 :: Score –2.6

Monte Carlo Assembly Animation Final Model :: Score –2.7

step	9
move	swap
length check	1
loop check	<i></i>
move accepted ?	Ý
score after move	- 2.7

1QKM Loop Building, Side Chain Placement, and Refinement

1QKM:

residues: 255
α-helices: 8
%α-helical: 66
Score Rank: 1
RMSD: 3.88Å

Preliminary Model For Adenovirus Protein IIIa

Overview of the Rebuilding-and-Refinement Method.

Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A. J.; Read, R. J.; Baker, D. "Highresolution structure prediction and the crystallographic phase problem" *Nature* **2007.**

16 January 2009

Improvement of model accuracy and molecular replacement

Table 1 Improvement of model accuracy and molecular replacement by a rebuilding and refinement protocol

	X-ray structure	X-ray structure Starting model* Leng		Length (n)† Sequence identity to best template		GDT-HA§		TFZ in molecular replacement		Auto-traced residues (backbone, side chain)¶	
				(%)‡	Best template	Refined model	Best template	Refined model	Best template	Refined model	
NMR	1hb6	2abd	86	N/A	0.58	0.79	4.1	11.3	12, 0	80, 80	
	1who	1bmw	94	N/A	0.59	0.68	5.7	8.3	25, 12	47, 44	
	1gnu	1kot	119	N/A	0.64	0.73	6.6	10.6	62, 53	82, 78	
	1a19	1ab7	89(2)	N/A	0.63	0.78	3.7	8.8	31, 20	48, 37	
							4.5	12.5	14, 0	44, 35	
	1fvk	1a24	189(2)	N/A	0.49	0.69	3.4	6.9	66, 50	97, 91	
							4.3	12.4	55, 43	85, 68	
	1mzl	1afh	93	N/A	0.60	0.66	4.6	5.1	36, 29	58, 44	
	1tvg	1xpw	143	N/A	0.63	0.74	4.3	6.7	15, 6	103,86	
	2snm	2sob	97	N/A	0.45	0.48	3.8	4.8	17, 16	43, 37	
	1agr	1ezy	129	N/A	0.49	0.76	N/A#		N	N/A#	
	labq	1awo	56	N/A	0.58	0.83	N/A☆		N/A☆		
CM	2hhz (T0331)	1ty9A	149	14.5	0.49	0.58	5.4	8.8	28, 24	68, 63	
	2hr2 (T0368)	2c21C	158 (6)	14.8	0.57	0.67	6.0	5.4	37, 37	20, 14	
	2hq7 (T0380)	2fhqA	145(2)	25.4	0.58	0.69	4.4	6.6	47, 23	92, 83	
							4.6	14.2	30, 17	60, 59	
	2ib0 (T0385)	1jgcB	170(2)	7.8	0.62	0.69	5.1	7.9	63, 37	56, 56	
		14 1000					5.8	15.5	50, 2	52, 52	
	2hi0 (T0329_D2)	1rqlA	92 (2)	8.8	0.52	0.67	N/A# N/A#		/A#		
	2hcf (T0330_D2)	1lvhB	75	14.1	0.51	0.65	N/A# N/A#		/A#		
	2hi6 (T0357)**	laco	132	8.4	0.45	0.52	N/A**		N/A**		
DN	2hh6 (T0283)	2b2j	112	3.6	0.22	0.64	5.4	9.0	26, 12	112, 112	

Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A. J.; Read, R. J.; Baker, D. "High-resolution structure prediction and the crystallographic phase problem" *Nature* **2007.**

16 January 2009
Refinement of NMR Structures (a-d) and Comparative Models (e-h)

Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A. J.; Read, R. J.; Baker, D. "High-resolution structure prediction and the crystallographic phase problem" *Nature* **2007.**

native crystal structure (blue), template/NMR structure (red), and the refined model (green)

Phasing by refined NMR structures, comparative and *de novo* models

de novo model (c⇒d)

(Inverse) Protein Folding Problem Holy Grail of Comp. Struct. Biology

- Given a protein's AA sequence, what is its 3-dimensional fold , and how does it get there?
- Assume 100 conformations for each amino acid in a 100 amino acid protein ⇒ 10²⁰⁰ possible conformations!
- Cyrus Levinthal's paradox of protein folding,1968.

- Given a protein fold, which primary sequence(s) fold into it?
- Assume a total of 100 conformations for all 20 natural occurring amino acids side chains in a 100 amino acid protein ⇒ 10²⁰⁰ possible conformations!
- Earth is less than 10¹⁰ years old.

Sampling and Scoring for Side Chain Repacking and Design

Simulated Annealing Monte Carlo energy minimization

Dahiyat, B. I. and Mayo, S. L. (1997) *Science*, 278, 82-7 Dunbrack, R. L., Jr. and Karplus, M. (1993) *J Mol Biol*, 230, 543-74. Kuhlman, B., et. al. (2003) *Science*, 302, 1364-1368.

A two-dimensional schematic of the target fold

16 January 2009

Schematic representation of Top7 residues 46-76

Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.; Baker, D. "Design of a Novel Globular Protein Fold with Atomic Level Accuracy" *Science* **2003**, **302**, **1364-1368**.

16 January 2009

Designed Model (blue) and X-ray Structure (red) of Top7

16 January 2009

The ACCRE Cluster – 1500 Processors at Your Service

16 January 2009

Protein Folding is KINDERLEICHT

Says Jonas (3 months)

