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This tutorial is intended to introduce users to several different ways Rosetta may be used to solve various 
structure determination tasks given low-resolution cryoEM density and X-ray crystallographic data. It is 
not intended to replace the user’s guide, available at https://www.rosettacommons.org/manuals/latest/main/. 
 
The tutorial is split up into four parts: an introduction to Rosetta and the density tools in Rosetta, and three 
main scenarios in which Rosetta may be used to aid in structure determination against low-resolution 
experimental density data.  Scenario 1 describes model refinement against low-resolution EM density, 
Scenario 2 describes model rebuilding, where one wishes to rebuild missing regions of a structure (for 
example, from a homology model), and Scenario 3 describes de novo model building, where we only have 
density data, and a sequence, with no identifiable structural homologues.  A final section describes how 
these protocols may also be used for model building and refinement against unphased crystallographic data. 
 
In each scenario, we present the most basic usage of Rosetta for the task, and then describe additional 
options that may be useful.  Command-line flags and input scripts are provided in shaded boxes, with 
boldfaced text indicating parameters of note.  These parameters are described in the text following the 
command line. 
 
Additionally, this tutorial focuses on refinement of structures when density data is available, however, 
several of the tools presented (in particular, those presented in Scenario 2) are useful tools even when no 
density data is available. In these cases, turning off density scoring terms will enable structure prediction in 
the absence of experimental data. 
 
Finally, most of the applications described in this tutorial work as given in the current Rosetta release, 
version 3.5.  However, there are several options that make use of applications unavailable in the current 
version.  These will be available in the next weekly release of Rosetta.  These options are pointed out in the 
documentation; they will be available in the next release of Rosetta, though the option names are not 
guaranteed to stay the same. 
  



Scenario 0: Rosetta and electron density basics 
 
This section provides a brief introduction to using Rosetta, and an overview of using density data within 
Rosetta. 
 
Density scoring terms in Rosetta 
 
Agreement to density is implemented in Rosetta as an additional energy term.  Rosetta assesses agreement 
to density by computing the density that one would expect to see, given a model, and measuring the 
agreement of the expected and experimental density. 
 
In general, there are two different fit-to-density implementations that are relevant, a slow-but-accurate 
version, and a fast-but-less-accurate version: 
 

elec_dens_window  
Recommended only for medium-high resolution (<4Å), and only in the final stages of refinement. 
Uses a “windowed correlation” over overlapping windows of residues.  The score is derived from 
this correlation (based on the probability of seeing a particular correlation in a correct 
conformation). 

elec_dens_fast 
Recommended for use in all other cases.  Uses interpolation on a precomputed grid of per-atom 
scores to approximate the high-resolution scoring function.  This version is significantly faster 
(~10x) and is very highly correlated the expensive version above. 

 
These energy terms may be provided to Rosetta in three ways.  First, it may be placed in a patch file like 
any other scoring term in Rosetta: 
elec_dens_fast=2.0 
elec_dens_window=20.0 
 
This is  passed to Rosetta with the flag -score:patch patchfile.  Secondly, it may be provided in a 
RosettaScript XML file as input (see the RosettaScript documentation or Scenarios 1 & 2 for examples of 
this): 
 
<Reweight scoretype=elec_dens_fast weight=2.0/> 
<Reweight scoretype=elec_dens_window weight=20.0/> 
 
Finally, the following flags may control the two scoring functions, respectively:  
 
-edensity:sliding_window_wt 2.0 
-edensity:fast_dens_wt 20.0 
 
The recommended weights for each of these terms vary depending on the density map resolution, starting 
model quality, and protocol.  Scenario 2 describes one way in which these weights may be tuned.  However, 
the following are good rules of thumb for setting the density weight within Rosetta: 

elec_dens_window – a weight of 2.0 is generally reasonable 
elec_dens_fast – a weight of 20 is generally reasonable 

 
In both cases, the weight should be reduced by ~ a factor of two for very low-resolution or noisy density, 
and should be increased by ~ a factor of two for very high-resolution (sub-3.5Å) density. 
 



Additionally, if the sliding window scoring function is used, the additional flag  
-density:sliding_window n should also be provided, which gives the width (in residues) of the 
widow to use. This should always be an odd number; 3 is recommended. 
 
In addition to the score terms above, there are also several flags that control map scoring behavior.  Maps 
are read into Rosetta using either the flag: 
 -edensity::mapfile mapfile.mrc 
 
Or from XML: 
<LoadDensityMap name=loaddens mapfile=mapfile.mrc/> 

Maps may be in either CCP4 or MRC format (the map type is automatically detected from the header info). 
 
The resolution of the map, used when comparing calculated to experimental density, is specified with the 
flag: 
-edensity::mapreso 5.0 

 
Maps may also be resampled to reduce memory usage and runtime.  This is done through the flag: 
-edensity::grid_spacing 2.0 

 
Notice that this flag should never be more than half the given resolution, and if using the fast scoring 
function never more than a third of the resolution.  For both parameters, the default is generally fine (don’t 
resample, and assume the resolution is ~3x the grid sampling). 
 
Finally, one may choose to calculate density using either cryoEM or X-ray scattering factors.  At low 
resolution, this probably makes little difference, but might at resolutions better than about 3.5Å.  The 
default is to use X-ray scattering factors, to turn on cryoEM scattering factors instead, use the following 
flag: 
-edensity::cryoem_scatterers 

 
 
Example 0A: Scoring a PDB in Rosetta with density 
 
Most simply, one may wish to simply score a model using Rosetta. This is most easily accomplished using 
the score_jd2 application.  A sample command line to rescore the structure in density is given in 
scenario0_rosetta_basics/ex_A_run_rescore.sh. It illustrates the use of various density flags to provide 
Rosetta with experimental density information. 
 
$ROSETTA3/source/bin/score_jd2.macosclangrelease \ 
 -database $ROSETTA3/database/ \ 
 -database ~/Rosetta/database/ \ 
 -in::file::s 1isrA.pdb 1issA.pdb \ 
 -ignore_unrecognized_res \ 
 -edensity::mapfile 1issA_6A.mrc \ 
 -edensity::mapreso 5.0 \ 
 -edensity::grid_spacing 2.0 \ 
 -edensity::fastdens_wt 20.0 \ 
 -edensity::cryoem_scatterers \ 
 -crystal_refine 
 
Some flags of note are boldfaced above.  First, the input structure is provided with the command -
in::file::s.  This is common to many Rosetta applications, and more than one input may be provided; 



each will be processed independently. The flags beginning with –edensity:: tell Rosetta about the 
density map into which it is being fit. The name of the mapfile (in CCP4 or MRC format), the resolution of 
the map, the grid sampling of the map (which should never be more than half the resolution), and the 
weights on the various fit-to-density scoring functions. These same flags are reused for many different 
protocols in addition to relax.  Finally, the flag -crystal_refine the flag turns on several density-related 
options related to PDB reading and writing, and should always be used when refining against density data. 
 
Note:  The input PDB must be aligned to the density map using some external tool.  Rosetta will optionally 
rigid-body minimize the structure into density before rescoring by providing the flag  
–edensity::realign min to the command.  If this is done, the flag –out::pdb will write the 
minimized PDB file to a PDB file. 
 
This command line outputs a score file, score.sc, that gives, for each structure specified with  
-in::file::s – the score with respect to each term in Rosetta’s energy function. The meaning of some 
of the othe terms are shown below. 

 
fa_atr, fa_rep: Lennard-Jones attractive, repulsive energies  
fa_sol: Lazaridis-Karplus solvation energy  
pro_close: proline ring closure energy  
hbond_*: hydrogen bond energy terms  
dslf_fa13: disulfide bond energy term 
rama, omega: Ramachandran preferences, omega angle preferences  
fa_dun: internal energy of sidechain rotamers as derived from Dunbrack's statistics.  
p_aa_pp: probability of observing a particular amino acid given phi/psi angles  
ref: reference energy for each amino acid  

 
Example 0B: Simple refinement into density using RosettaScripts and relax 
 
In this section we introduce RosettaScripts by way of a very simple refinement-into-density example.  
RosettaScripts provides an XML scripting interface to Rosetta that allows fine-grained control of protocols.  
The syntax is fully described in the documentation; however, a very brief introduction is provided here.  
The basic syntax for the XML is illustrated here (scenario0_rosetta_basics/ex_B1_relax_density.xml) 
 

<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <dens weights=talaris2013_cart> 
         <Reweight scoretype=elec_dens_fast weight=20.0/> 
      </dens> 
   </SCOREFXNS> 
 
   <MOVERS> 
       <SetupForDensityScoring name=setupdens/> 
       <LoadDensityMap name=loaddens mapfile="1issA_6A.mrc"/> 
       <FastRelax name=relaxcart scorefxn=dens repeats=1 cartesian=1/> 
   </MOVERS> 
 
   <PROTOCOLS> 
      <Add mover=setupdens/> 
      <Add mover=loaddens/> 
      <Add mover=relaxcart/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn=dens/> 
</ROSETTASCRIPTS> 

Declare score 
functions 

Declare movers 
(atomic 

conformation 
operations) 

Protocol is a 
sequence of 

movers 



 
In this particular example, we declare a single scorefunction, dens, which is set to use the weights 
talaris2013_cart (a default score function, don’t need to worry about it), and also turns on elec_dens_fast, 
with a weight of 20.  We then declare three movers, SetupForDensityScoring, LoadDensityMap, and 
FastRelax, which sets up the loaded structure for density scoring, loads a map into memory, and then 
refines the structure using the FastRelax protocol.  The declared scorefunction, dens, is used as an input to 
the FastRelax mover. 
 
To run this script, we use the following command line (scenario0_rosetta_basics/ex_B1_relax_density.sh): 
$ROSETTA3/source/bin/rosetta_scripts.macosclangrelease \ 
 -database $ROSETTA3/database/ \ 
 -in::file::s 1isrA.pdb \ 
 -parser::protocol ex_B1_run_RS_relax_density.xml \ 
 -ignore_unrecognized_res \ 
 -edensity::mapreso 5.0 \ 
 -edensity::cryoem_scatterers \ 
 -crystal_refine \ 
 -out::suffix _relax \ 
 -default_max_cycles 200 

 
Note:  We do not have to specify the density weight or the map file on the command line, since they are 
handled within the XML file.  However, other density options must be specified on the command line.  
When using RosettaScripts, the density weights must be specified in the XML, the input map may be 
specified either way. 
 
Finally, in the previous XML file, the tag cartesian=1 appears, which refines the structure in Cartesian 
space.  Rosetta also allows refinement in torsional space, which may be better for capturing domain motion, 
and for further reduction in model parameters against low-resolution data.  To enable torsional refinement 
(scenario0_rosetta_basics/ex_B1_relax_tors_density.xml), we make two small changes to the XML: 
       … 
       <dens weights=talaris2013> 
       … 
       <FastRelax name=relaxtors scorefxn=dens repeats=1 cartesian=0/> 
       … 

 
  



Scenario 1: Model refinement via iterative local rebuilding 
 
In this scenario, we introduce our basic cryoEM refinement protocol, which uses an iterative local 
rebuilding procedure to escape local minima during refinement.  We additionally introduce the following 
tools: 

• Refinement of symmetrical systems and make_symmdef_file 
• Atomic B factor fitting 
• Assessing model-map agreement with density_tools 

 
As a running example, we refine models of the transmembrane region of the TRPV1 ion channel, using a 
3.4 Å cryoEM single particle reconstruction (M. Liao, E. Cao, D. Julius, Y. Cheng, Nature, 2013), and the 
deposited model (id: 3j5p) as a starting model.  We will first refine this asymmetrically, and then introduce 
symmetric refinement. 
 
Example 1A: Asymmetric refinement into cryoEM density 
 
A summary of the XML used for refinement (scenario1_cryoem_refinement/ex_A1_asymm_1cycle.xml) is 
shown below.  Following, a brief description of the movers and options available is provided. 
 
<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <cen weights="score4_smooth_cart"> 
         <Reweight scoretype=elec_dens_fast weight=20/> 
      </cen> 
 
      <dens_soft weights="soft_rep"> 
         <Reweight scoretype=cart_bonded weight=0.5/> 
         <Reweight scoretype=pro_close weight=0.0/> 
         <Reweight scoretype=fa_sol weight=0.0/> # membrane protein 
         <Reweight scoretype=elec_dens_fast weight=25/> 
      </dens_soft> 
 
      <dens weights=talaris2013_cart> 
         <Reweight scoretype=elec_dens_fast weight=25/> 
         <Reweight scoretype=fa_sol weight=0.0/> # membrane protein 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76, 

C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81,S:0.81,Y:0.88,W:0.88, 
A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 

      </dens> 
   </SCOREFXNS> 
   <MOVERS> 
       <SetupForDensityScoring name=setupdens/> 
       <LoadDensityMap name=loaddens mapfile="./trpv1_half1.mrc"/> 
 
       <MinMover name=cenmin scorefxn=cen type=lbfgs_armijo_nonmonotone 

max_iter=200 tolerance=0.00001 bb=1 chi=1 jump=ALL/> 
 
       <CartesianSampler name=cen5_50 automode_scorecut=-0.5 scorefxn=cen 

mcscorefxn=cen fascorefxn=dens_soft strategy="auto" fragbias="density" 
rms=2.0 ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 fraglens=3 
nfrags=25/> 

 
       <FastRelax name=relaxcart scorefxn=dens repeats=1 cartesian=1/> 
    </MOVERS> 

 



 
    <PROTOCOLS> 
        <Add mover=setupdens/> 
        <Add mover=loaddens/> 
        <Add mover=cenmin/> 
        <Add mover=relaxcart/> 
        <Add mover=cen5_50/> 
        <Add mover=relaxcart/> 
        <Add mover=relaxcart/> 
    </PROTOCOLS> 
    <OUTPUT scorefxn=dens/> 
</ROSETTASCRIPTS> 
     
 
The protocol is somewhat similar to the relax protocol of Scenario 0B, and in fact, calls the relax mover 
three times.  However, there are a few new additions, as well as a few scorefunction changes, highlighted in 
bold. 
 
The main addition is the CartesianSampler mover.  This mover identifies backbone segments it believes 
are incorrect, given local strain and local density agreement.  A Z score is computed compared to other 
refined near-atomic-resolution structures, and anything with a Z score worse than -0.5 is selected for 
rebuilding (this cutoff value may be changed through the automode_scorecut flag).  The rebuilding loop 
then uses predicted local backbones to replace these segments iteratively.  The number of rebuilding cycles 
can be controlled with the ncycles flag.   
 
Two other flags that might be useful to modify are the fraglens flag and the rms flag.  These control the 
length of backbone segment that gets replaced, and the RMS deviation of the fragment endpoints necessary 
to accept a fragment, respectively.  Increasing both of these parameters will increase the local movement of 
the model during refinement.   Finally, the remaining flags control acceptance behavior and/or sampling 
behavior, and for most cases should be left as-is. 
 
An additional option is passed to the density scoring via the <Set scale_sc_dens_byres=…/> tag.  In the 
refinement protocol, this sets a per-amino-acid sidechain reweighing.  A value of 1 means the sidechain 
density weight is equal to the backbone.  The weights shown in this example were determined by fitting 
these parameters into refined structures into several 3-5Å cryoEM density maps, the end result is a slight 
downweighing of sidechain density, particularly for charged sidechains. 
 
Finally, the MinMover first minimizes the structure using a low-resolution energy function (cen).  We have 
found this step is most useful for improving protein backbone geometry, particularly with hand-traced 
models.  This low-resolution scorefunction uses the centroid representation, and requires that either the flag 
–in::file::centroid_input is provided, or the SwitchResidueTypeSet mover is first called (in this 
example we use the former option). 
 
Note:  Older versions of Rosetta do not support some of these options.  For these versions, remove the 
<Set scale_sc_dens_byres=…/> and replace the <CartesianSampler …/> tag with 
(scenario1_cryoem_refinement/ex_A1_asymm_1cycle_legacy.xml): 
 
       <CartesianSampler name=cen5_50 scorefxn=cen mcscorefxn=cen 

fascorefxn=dens_soft strategy="density" fragbias="density" rms=2.0 
ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 fraglens=3 
nfrags=25/> 

 



While this script shows one cycle of rebuilding, in practice, we have found that multiple cycles, with 
increasing strictness on the Z score cutoff (automode_scorecut) works much better in practice, as we fix the 
regions with worst local strain and local density fit, and then fit the more borderline cases.  Thus, in 
practice, we will use an XML like the following (scenario1_cryoem_refinement/ 
ex_A2_asymm_multicycle.xml): 
 
   <CartesianSampler name=cen5_50 automode_scorecut=-0.5 scorefxn=cen 

mcscorefxn=cen fascorefxn=dens_soft strategy="auto" fragbias=density rms=2.0 
ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 /> 

   <CartesianSampler name=cen5_60 automode_scorecut=-0.3 scorefxn=cen 
mcscorefxn=cen fascorefxn=dens_soft strategy="auto" fragbias=density rms=1.5 
ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 /> 

   <CartesianSampler name=cen5_70 automode_scorecut=-0.1 scorefxn=cen 
mcscorefxn=cen fascorefxn=dens_soft strategy="auto" fragbias=density rms=1.5 
ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 /> 

   <CartesianSampler name=cen5_80 automode_scorecut=0.0 scorefxn=cen 
mcscorefxn=cen fascorefxn=dens_soft strategy="auto" fragbias=density rms=1.0 
ncycles=200 fullatom=0 bbmove=1 nminsteps=25 temp=4 /> 

 
With a protocols section: 
   … 
   <Add mover=cen5_50/> 
   <Add mover=relaxcart/> 
   <Add mover=cen5_60/> 
   <Add mover=relaxcart/> 
   <Add mover=cen5_70/> 
   <Add mover=relaxcart/> 
   <Add mover=cen5_80/> 
   … 

 
It is important to put a relax call in between each rebuilding call, as model strain is part of the selection 
criteria, and the relax is necessary to properly evaluate model strain. 
 
 
Example 1B: Symmetric refinement into cryoEM density 
 
As this is a symmetric system, to correctly evaluate the energetics of the system, we need to model with 
symmetry-related copies present.  This may be done through a two-step process:  first, we run the 
make_symmdef_file script to prepare a description of the symmetry of the system in a Rosetta-readable 
format.  Next, we enable symmetric scoring and optimization within the XML file. 
 
The information that Rosetta needs to know about a symmetric system is encoded in the symmetry 
definition file. Its tells Rosetta: (a) how to score a structure symmetrically from only asymmetric unit 
interactions, and (b) how the rigid-body degrees of freedom are allowed to move to maintain the symmetry 
of the system. 
 
To aid in creating a symmetry definition file from a symmetric (or near-symmetric) PDB, an application, 
make_symmdef_file.pl, has been included in src/apps/public/symmetry. To generate the symmetry 
definition file for TRPV1, we run the command in scenario1_cryoem_refinement/ex_B1_make_symmdef.sh.  
 
$ROSETTA3/source/src/apps/public/symmetry/make_symmdef_file.pl \ 
 -m NCS -a A -i B \ 
 -p 3j5p_transmem.pdb –r 1000 > TRPV1.symm  



 
This script needs a few pieces of information: with –m, the type of symmetry to generate (here NCS), with 
–a, the primary chain (here A), and with –i, an adjacent chain in each symmetry group, separated by 
spaces (here just B).  For Cn symmetries, only one adjacent chain is given; for Dn, two are given.  Finally, 
with –r, we give the contact distance between a neighbor chain and the primary chain necessary to include 
that subunit explicitly (here, 1000, to ensure every symmetrically related copy is included).  If the input 
system is asymmetric, the script will make a symmetrical version of it (sometimes significantly perturbing 
it in the process).  There are a lot of other options, including forcing symmetrical order and helical and 
higher-order symmetries, see the documentation! 
 
In addition to the definition file written to STDOUT, the script will also write a file 
3j5p_transmem_symm.pdb, containing the symmetrized version of the input file, and a file 
3j5p_transmem_INPUT.pdb, that contains only the mainchain, to be used as input (in addition to the 
symmetry definition file). 
 
The symmetry definition file looks something like this:  
symmetry_name TRPV1__4  
E = 4*VRT0_base + 4*(VRT0_base:VRT3_base) + 2*(VRT0_base:VRT2_base)  
anchor_residue CoM  
…  
set_dof JUMP0_to_com x(11.7023996817515)  
set_dof JUMP0_to_subunit angle_x angle_y angle_z  
…  
 
The omitted sections describe a system of virtual residues that maintain the symmetry of the system, and 
they generally should remain unedited.  
 
The two set_dof lines are what the user may want to edit.  There are two possibilities when refining 
symmetric structures into density: 

A) we don’t want to refine the rigid body orientation of the entire system; 
we know the symmetry axes and we don’t want them to move 

B) we do want to refine the orientation of the entire system, including symmetry axes 
 
Generally, in cryoEM, where the maps are symmetrically averaged, and the symmetry is known, we want 
to use strategy A.  However, in some cases (for example, if our starting model was not perfectly symmetric) 
we want to use strategy B.  In both cases, a minor edit to the set_dof lines in the symmdef file is necessary. 
 
For strategy A, because we are using density, we need to change the first set_dof line to the following: 
set_dof JUMP0_to_com x y z  

 
For strategy B, we leave the two lines unchanged and instead add a third line: 
set_dof JUMP0 x y z angle_x angle_y angle_z  

 
For Dn symmetries, the changes are similar, except in A the jump name is JUMP0_0_to_com.  Alternately, 
for strategy B, the flag –d can be given to the make_symmdef_file script.  The rest of this section uses 
strategy A; the edited symmetry definition file is in scenario1_cryoem_refinement/TRPV1_edit.symm 
 
Once a symmetry definition file has been generated, then refining structures in Rosetta symmetrically is 
straightforward.  The changes to the previous XML file are indicated below (see 
scenario1_cryoem_refinement/ex_B2_symm_multicycle.xml): 
 



      … 
      <cen weights="score4_smooth_cart" symmetric=1> 
      <dens_soft weights="soft_rep" symmetric=1> 
      <dens weights=talaris2013_cart symmetric=1> 
      … 
      <SetupForSymmetry name=setupsymm definition="./TRPV1_edit.symm"/> 
      … 
      <SymMinMover name=cenmin scorefxn=cen type=lbfgs_armijo_nonmonotone 

max_iter=200 tolerance=0.00001 bb=1 chi=1 jump=ALL/> 

 
In all three declared scorefunctions, symmetric=1 must be given.  Additionally, the 
SetupForDensityScoring mover must be replaced with the SetupForSymmetry mover.  Finally, the 
MinMover must be replaced with its symmetric counterpart. 
 
 
Example 1C: Atomic B factor fitting and reporting model-map agreement 
 
Generally, depending on the quality of the initial models and the quality of the data, one will want to 
anywhere from a dozen to about 100 independent trajectories.  To evaluate these models, typically, we use 
an independent reconstruction (that is, a reconstruction not used in model fitting) and atomic B-factor 
fitting of individual models into density (which provides a more accurate model of density from an atomic 
model). 
 
Thus, to evaluate each of these models, we have provided XML-parsable movers to perform each of these 
two steps.  These are illustrated in the following XML file (from 
scenario1_cryoem_refinement/ex_C1_bfact_FSC.xml): 
 
   <BfactorFitting name=fit_bs max_iter=50 wt_adp=0.0005 init=1 exact=1/> 
   <ReportFSC name=reportFSC res_low=10 res_high=3.4 nresbins=20 

testmap="TRPV1_half2.mrc"/> 

 
The first mover will fit atomic B factors to maximize model-map correlation.  A constraint enforcing 
nearby atoms to take the same B factors is also employed, and the weight on this term is controlled with the 
wt_adp term (0.0005 is generally well-behaved).  Finally, init=1 means to do a quick scan of overall B 
factors before beginning refinement; if there is more than one call to this mover in a single trajectory, then 
only the first needs to have init=1.  Exact=1 should almost always be used (there is a fast, approximate 
version, but it occasionally is poorly behaved, and uses significant amounts of memory). 
 
The second mover will calculate a model-map FSC, and integrate over the input resolution ranges.  We 
have found that looking at FSC is the high-resolution shells only is most informative, as in this case where 
we are looking only at the shells from 10Å to 3.4Å.  For each call to this function, it adds a line to the 
header of the output PDB file: 
 
   REMARK   1 FSC[mask=6.75237](10:3) = 0.250239 / 0.239448                       

 
Here, the first number after the = sign is the agreement to the training map, and the second number is the 
agreement to the test map. 
 
Because we are starting from a PDB of the tetramer, and we want Rosetta to be aware of the symmetry, we 
should rerun the make_symmdef_file script.  However, since we did not refine symmetry, as a shortcut, we 
can simply take chain A of the output PDB, and reuse the old symmetry definition file. 
 



Note: For the purposes of this demo, steps B and C have been split into separate steps.  However, they are 
easily combined into a single XML file (and have been, in 
scenario1_cryoem_refinement/ex_C2_full_refinement.xml). 
 
Example 1D: Detailed model-map agreement with density_tools 
*Not available in current release 
 
Finally, an application, ‘density_tools,’ is intended to provide additional information on model-map 
agreement as well as some methods for map manipulation.  Some of these are briefly presented below. 
 
To get the full FSC between a model and map using Rosetta’s density model 
(scenario1_cryoem_refinement/ex_D1_full_FSC.sh): 
 
bin/density_tools.linuxgccrelease \ 
 -database ~/Rosetta/database/ \ 
 -in::file::s TRPV1_INPUT_0001.pdb \ 
 -edensity::mapfile TRPV1_half2.mrc \ 
 -edensity::mapreso 3.4 \ 
 -edensity::cryoem_scatterers \ 
 -crystal_refine \ 
 -denstools::verbose 

 
Additionally, if the arguments –denstools::mask –denstools::mask_radius 6.0 are given, then 
the input model is used to mask the map.  Despite the name, mask_radius actually controls the resolution 
cutoff of the mask (so with these flags, there is no contribution from the mask to the FSC above 6 Å radius).  
To view the calculated density (and the mask), add the flag –denstools::dump_map_and_mask. 
 
To get per-residue real-space correlations between a model and a map, replace -denstools::verbose 
with: 
-denstools::perres 

 
To cut a region of density out of the map corresponding to a model, replace this flag instead with: 
-denstools::maskonly 

 
Or the inverse: 
-denstools::cutonly 

  



Scenario 2: Model rebuilding guided by experimental density data 
 
In this scenario, we introduce a tool, RosettaCM, for building missing portions of a model guided by 
density data.  While primarily geared towards comparative modeling, it may also be useful for building 
portions of a protein that are disordered when crystallized or difficult regions in hand-built models.  In this 
scenario, we introduce the basic rebuilding protocol, then show how the tool may also be used to: 

• Combine pieces from multiple template models guided by density 
• Rebuild with user-defined restraints 
• Iteratively rebuild models in difficult cases difficult cases 

 
As a running example, we use the 20S proteasome (Xueming Li et al., Nature Methods, 2013), where only 
a subset of particles were used, resulting in a 4.1Å reconstruction.  We are building models starting from a  
homologous structure (pdb id: 1iru) as the starting model (25%/32% sequence identity to chains A/B). 
 
Example 2A: Preparing templates for use in RosettaCM 
 
In many cases, much of the setup work is handled by a script, setup_RosettaCM.py in RosettaTools (a 
separate repository available from rosettacommons.org).  This script takes an input alignment in a variety 
of formats, and prepares the inputs automatically.  It is executed by running the command: 
 
setup_RosettaCM.py \ 
 -–fasta t20s.fasta \ 
 --alignment tmpl.fasta \ 
 --alignment_format fasta \ 
 --templates tmpl.pdb \ 
 --rosetta_bin ~/Rosetta/main/source/bin \ 
 --verbose 

 
Inputs include the full-length fasta, an alignment file – in either fasta, ClustalW, or HHSearch format – and 
the corresponding template PDB files.  This script will prepare all the necessary inputs in order to run 
RosettaCM. 
 
Alternately, the setup may be performed manually.  In this case, since we are using some nonstandard 
features (symmetry and density) and we have two chains in the asymmetric unit we will do this; alternately, 
the inputs from the previous step may be used as a starting point and subsequently modified.  In this case, 
we may convert our alignment to Rosetta format (scenario2_model_rebuilding/20S_1iru.ali): 
 
## 1XXX_ 1iruAH_thread 
# hhsearch 
scores_from_program: 0 1.00 
0 TVFSPDGRLFQVEYAREAVKK-GSTALGMKFANGVLLISDKKVRSRLIEQNSIEKIQLIDDYVAAVTSGLVADAR… 
0 TIFSPEGRLYQVEYAFKAINQGGLTSVAVRGKDCAVIVTQKKVPDKLLDSSTVTHLFKITENIGCVMTGMTADSR… 
-- 

 
In this format, the first line is '##' followed by a code for the target and one for the template.  The second 
line identifies the source of the alignment; the third just keep as it is.  The fourth line is the target sequence 
and the fifth is the template; the number is an 'offset', identifying where the sequence starts.  However, the 
number doesn't use the PDB resid but just counts residues starting at 0.  The sixth line is '--'.  Multiple 
alignments may be concatenated in a single file, with the template code identifying the template 
corresponding to each alignment. 
 



RosettaCM takes as inputs partially threaded models, that is models where aligned positions have their 
residue identities remapped, and unaligned residues are not present.  To generate these models from an 
alignment file and template, we can run the Rosetta command 
(scenario2_model_rebuilding/ex_A1_partialthread.sh): 
 
bin/partial_thread.linuxgccrelease \ 
 -database ~/Rosetta/database/ \ 
 -in::file::fasta t20s.fasta \ 
 -in::file::alignment 20S_1iru.ali \ 
 -in::file::template_pdb 1iruAH_aln.pdb 

 
This will output a partially threaded model in 1iruA_thread.pdb that is correctly numbered for input into 
RosettaCM. 
 
Next, we need to set up symmetric modeling with RosettaCM.  As in Scenario 1, we use the 
make_symmdef_file.pl script in order to generate a symmetry definition file for use in Rosetta.  A 
straightforward way to do so is to use Chimera to dock the necessary chains into density.  We need a single 
“primary chain” and a couple of an adjacent chain in each point group; since the proteasome features D7 
symmetry, that means we need an adjacent chain in the 7-fold complex, as well as a chain in the opposite 
ring.  An example has been created in scenario2_model_rebuilding/setup_symm.pdb where three copies of 
the threaded model have been docked into density with Chimera.  To generate our D7 symmetry file from 
this input, we then simply have to run the command 
(scenario2_model_rebuilding/ex_A2_make_symmdef.sh).  
 
~/rosetta_source/src/apps/public/symmetry/make_symmdef_file.pl \ 
 -m NCS -a A -i B C \ 
 -p setup_symm.pdb –r 1000 > D7.symm  

 
Since we have already created the input templates using the partial_thread application, we can ignore the 
setup_symm_INPUT.pdb file and use the output of partial thread as the input.  However, we still need to 
align all the threaded models to this input structure.  This can either be done with the program TMalign 
(external to Rosetta) or by using Chimera to dock the individual threaded models into density.  In this case, 
where we have just one template, it has already been aligned to the template in 
scenario2_model_rebuilding/tmpl_thread_aln.pdb. 
 
As in Scenario 1, we need to make a small edit to the symmetry definition file for density refinement.  
Change the following lines: 
set_dof JUMP0_0_to_com x(35.3434689631743) 
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z 
set_dof JUMP0_0 x(39.2905097135684) angle_x 

 
To (scenario2_model_rebuilding/D7_edit.symm): 
set_dof JUMP0_0_to_com x y z 
set_dof JUMP0_0_to_subunit angle_x angle_y angle_z 

 
 
Note: The 20S proteasome case we are using contains two chains in the asymmetric unit.  To specify this 
as inputs to RosettaCM, we need to list the fasta file, separating the chains by the slash character ‘/’.  This 
is really only necessary in the fasta provided as input to RosettaCM (next step) however, there is no harm is 
doing this in every step. 
 



Example 2B: Running RosettaCM using a single template model as input. 
 
Like the methods introduced in Scenario 1, RosettaCM is controlled through an XML script using 
RosettaScripts.  The XML is as follows (scenario2_model_rebuilding/ex_B1_rosettaCM_singletarget.xml): 
 
<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <stage1 weights="score3" symmetric=1> 
         <Reweight scoretype=atom_pair_constraint weight=0.25/> 
      </stage1> 
      <stage2 weights="score4_smooth_cart" symmetric=1> 
         <Reweight scoretype=atom_pair_constraint weight=0.25/> 
      </stage2> 
      <fullatom weights="talaris2013_cart" symmetric=1> 
         <Reweight scoretype=atom_pair_constraint weight=0.25/> 
      </fullatom> 
   </SCOREFXNS> 
   <MOVERS> 
      <Hybridize name=hybridize stage1_scorefxn=stage1 stage2_scorefxn=stage2 

fa_scorefxn=fullatom batch=1> 
         <Template pdb="tmpl_thread_aln.pdb" weight=1.0  

cst_file="auto" symm_file="D7_edit.symm"/> 
      </Hybridize> 
   </MOVERS> 
   <PROTOCOLS> 
 <Add mover=hybridize/> 
   </PROTOCOLS> 
</ROSETTASCRIPTS> 

 
The main work is done through a single mover, Hybridize which handles all stages of model-building.  
Input structures are specified via Template lines (in this case there is only one).  For each template line, we 
specify the pdb input, as well as a couple of other parameters: a weight (the relative frequency we sample 
each template with); a constraint file (setting this to “auto” sets up automatic constraints to the template, 
while setting this to “none” turns off all constraints, user-defined constraints are described later); and an 
(optional) symmetry definition file. 
 
Note:  Be sure that your templates are aligned to the density! 
 
Given this XML, RosettaCM is then run with the following command line 
(scenario2_model_rebuilding/ex_B1_rosettaCM_singletarget.sh): 
~/Rosetta/main/source/bin/rosetta_scripts.default.macosgccrelease \ 
 -database ~/Rosetta/main/database \ 
 -in:file:fasta t20s.fasta \ 
 -parser:protocol ex_B1_rosettaCM_singletarget.xml \ 
 -nstruct 50 \ 

-edensity::mapfile t20S_41A_half1.mrc \ 
-edensity::mapreso 5.0 \ 
-edensity::cryoem_scatterers \ 
-relax:minimize_bond_angles \ 

 -relax:min_type lbfgs_armijo_nonmonotone \ 
 -relax:jump_move true \ 
 -relax:default_repeats 2 \ 
 -default_max_cycles 200 

 



The input command is similar to those seen before, but with a few key differences.  First, the input to 
Rosetta is specified with -in:file:fasta rather than -in:file:s.  Secondly, the argument nstruct is 
bolded.  This argument controls the number of output structures generated.  Unlike previous protocols, it is 
generally necessary to generate one- to several-hundred output trajectories to sufficiently sample 
conformational space (the exact number of structures primarily depends upon the number of unaligned 
residues in the input templates).  Finally, the final five arguments are necessary to provide to RosettaCM 
for refining structures against density in the final stage. 
 
Note (1): the XML scripts from Scenario 1 and 2 may be combined together so that every independent 
trajectory is subject to the full refinement protocol.  This works well in practice, but may be 
computationally expensive, as some of the models generated by RosettaCM will be poor quality and can 
easily be filtered. 
 
Note (2): for running large numbers of jobs in parallel on a cluster, the command line argument -
out:suffix is very useful to ensure outputs do not overwrite each other. 
 
Example 2C: Running RosettaCM using multiple template models as input. 
 
One of the strengths of RosettaCM is its ability to make use of multiple template structures, and to 
recombine portions of these models during conformational sampling.  This is particularly useful when 
multiple homologous structures are available, some with closer sequence identity, and some with more 
complete coverage.  The protocol allows the combination of features of both models. 
 
To make use of this feature, we simply add additional template lines in the input XML.  In this case, we 
add the template 1ryp (scenario2_model_rebuilding/ex_C1_rosettaCM_multitarget.xml): 
 
      …  
      <Hybridize name=hybridize stage1_scorefxn=stage1 stage2_scorefxn=stage2 

fa_scorefxn=fullatom batch=1> 
         <Template pdb="1iruA_thread.pdb" weight=1.0  

cst_file="auto" symm_file="D7_edit.symm"/> 
         <Template pdb="1rypA_thread.pdb" weight=1.0  

cst_file="auto" symm_file="D7_edit.symm"/> 
      </Hybridize> 
      …  
 
 
The rest is handled automatically by the protocol.  However, there are a few caveats when using multiple 
input structures: 

• With density, we need to ensure that all input models are aligned to the density.  This can be done 
using either TMalign or Chimera’s alignment tools. 

• In each trajectory, a starting model is chosen at random; the constraints and symmetry from this 
selected model are chosen at the start of each run.  If we wish to use a portion of a model, but do 
not want to use its symmetry or constraints, we can assign it a weight of 0: backbone conformations 
from this model will be used in conformational sampling, but the symmetry and constraints will 
never be used. 

• Similarly, gaps in the selected starting model are rebuilt before recombination occurs.  If one of the 
templates has poor coverage, but provides valuable structural features, it should be used, but with 
weight 0. 

 
 



Example 2D: Running RosettaCM with user specified constraints. 
 
Another strength of RosettaCM is the ability to make use of additional experimental information that 
provides restraints over conformational space.  While previously, we have used cst_file=auto to 
automatically generate constraints from template structures, if experiments provide distance constraints (or 
some other positional restraint, we may make use of them in model rebuilding as well. 
 
The Rosetta documentation provides a good overview of the types of constraints that may be used, with a 
number of different constraint types and functional forms possible.  For this demo, we will assume we have 
knowledge on the distance between residues 107 and 143 that we want to use during rebuilding. 
 
This information can be encoded in a constraint file (scenario2_model_rebuilding/ex_D1_constraints.cst): 
AtomPair CA 107 CA 143 HARMONIC 5.0 1.0 

We then replace the cst_file=auto lines in the XML with our own constraint file. 
 
Note:  The numbering of residues is based upon the order in the input fasta file (and does not reset between 
chains!). 
 
      …  
      <Template pdb="tmpl_thread_aln.pdb" weight=1.0  

cst_file="ex_D1_constraints.cst" symm_file="D7_edit.symm"/> 
      …  

We can then rebuild and refine as before. 
 
 
Example 2E: Model selection and running RosettaCM iteratively 
 
With possibly hundreds of generated models, there are a few strategies to identify the best-sampled models.  
Generally, models should be filtered on two different criteria – the total score and the density score – in 
some way.  We often select the best 10-20% of models based on total score, and the sort these models by 
density score, but visual inspection of the best by both criteria can often be beneficial in difficult cases. 
 
Finally, one strategy for solving difficult structures is to apply RosettaCM iteratively.  Using the above 
criteria, we can select the best 5-20 (roughly) models from the first round of refinement, and feed them as 
inputs into the next round.  This is very briefly illustrated in the following XML 
(scenario2_model_rebuilding/ex_E1_rosettaCM_iter.xml): 
      …  
      <Hybridize name=hybridize stage1_scorefxn=stage1 stage2_scorefxn=stage2 

fa_scorefxn=fullatom batch=1> 
         <Template pdb="expected_outputs/S_multitgt_0001_A.pdb" weight=1.0  

cst_file="none" symm_file="D7_edit.symm"/> 
         <Template pdb="expected_outputs/S_multitgt_0002_A.pdb" weight=1.0  

cst_file="none" symm_file="D7_edit.symm"/> 
         <Template pdb="expected_outputs/S_multitgt_0003_A.pdb" weight=1.0  

cst_file="none" symm_file="D7_edit.symm"/> 
      </Hybridize> 
      …  

 
There is also some manipulation of input models that can prove beneficial.  If one wants to force rebuilding 
some segment of backbone, they can simply delete those residues in all input models.  Similarly if one 
wants to force some region to adopt a conformation taking in one input model, they can delete all other 
conformations from all models.  



Optional Scenario: Application of these tools to crystallographic data 
 
While the previous two scenarios have focused on refinement against low-resolution EM data, we also may 
use low-resolution unphased crystallographic data to guide sampling as well.  This section provides a very 
brief introduction to some of the crystallographic refinement tools.  These tools are largely implemented 
through the RosettaScripts XML interface. 
 
Rosetta’s crystallographic scorefunction, xtal_ml, is implemented through calls to Phenix (Adams et al., 
Acta Cryst. D, 2010) through Phenix’s Python interface.  Therefore, Rosetta must be compiled in a 
particular manner: 

• Make a link of $PHENIX_HOME/build/intel-linux-2.6-x86_64/base/lib/libpython2.7.* to 
$ROSETTA3/external/lib  

• Copy $PHENIX_HOME/build/intel-linux-2.6-x86_64/base/include/python2.7/ to 
$ROSETTA3/external/include 

 
Then compile as usual with 'extras=python', e.g.: 
./scons.py –j8 bin mode=release extras=python 

 
Phenix contains a wrapper command, phenix.rosetta.run_phenix_interface, that point Rosetta and Phenix to 
each other.  So all Rosetta commands that make use of scoring against unphased data should be called in 
this way: 
phenix.rosetta.run_phenix_interface \ 
  ~/Rosetta/main/source/bin/rosetta_scripts.macosgccrelease \ 
   -parser:protocol refine.xml \ 
 -s model.pdb \ 
 -cryst::mtzfile input.mtz \ 
 -crystal_refine 

 
The unphased crystallographic data is given (in MTZ format) with the flag -cryst::mtzfile.  Note that 
this data must have only a single F/SIGF column, and must have R-free reflections defined. 
 
Crystal symmetry may be setup using the make_symmdef_file script 
~/Rosetta/src/apps/public/symmetry/make_symmdef_file.pl \ 
 -m CRYST \ 
 -p input.pdb > cryst.symm  

Note: The input structure must have an appropriate CRYST1 line 
 
There are also a number of movers to specifically deal with unphased crystal data.  First, to setup for crystal 
refinement, and pass in a few options, including refinement target and twin laws: 
    <SetRefinementOptions name=setup_opts res_high=0 res_low=0 twin_law=”” 

target=”ml” map_type=”2mFo-DFc”/> 

All the options given here are the default, but one can specify other refinement options. 
 
To rephrase the data using the current model (the density map overwrites the current map, and can be 
accessed through the density scoring of the previous sections): 
      <RecomputeDensityMap name=recompute_dens/> 
 
To fit atomic B factors against the reciprocal space data: 
   <FitBfactors name=fit_bs adp_strategy="individual"/> 

 



To automatically set the weight on xtal_ml to a reasonable value (by normalizing gradients of the 
experimental and energetic terms): 
   <SetCrystWeight name=set_cryst_wt weight_scale=0.5 scorefxn=xtal 

scorefxn_ref=xtal cartesian=1 bb=1 chi=1/> 

Notice that cartesian=1 specifies that subsequent movement will be done in Cartesian space; change this to 
0 if the movement is instead in torsional space. 
 
To tag the output PDB with a line reporting R/Rfree: 
   <TagPoseWithRefinementStats name=tag tag=cycle/> 

 
Additionally, refinement commonly uses two additional movers for conformational sampling.  The first, 
SymPackRotamersMover performs rotamer optimization against phased crystal data: 
   <SymPackRotamersMover name=screpack scorefxn=dens 

task_operations=extra,restrict,keep_curr /> 

 
The second, SymMinMover, performs all-atom minimization against the unphased reflection data: 
   <SymMinMover name=min_cart_xtal cartesian=1 scorefxn=xtal 

type=lbfgs_armijo_rescored tolerance=0.0001 max_iter=100 bb=1 chi=1/> 

Again, cartesian=1 specifies that movement will be done in Cartesian space; change this to 0 if the 
movement is desired in torsional space (better-suited for low resolution and domain motions). 
 
Finally, two common refinement protocols against crystallographic data are included in Rosetta, in 
Rosetta/source/src/apps/public/crystal_refinement/: 

• low_resolution_refine.xml – intended for worse than 3 Å data or very distant starting structures 
• high_resolution_refine.xml – intended for better than 3 Å data with a reasonable starting model 

 
These protocols work well over a wide range of parameters, and so are probably sufficient for a vast 
majority of problems.  They also serve well as starting points for custom protocols. 
 
  



Scenario 3: Model rebuilding guided by experimental density data 
 
Note: The methods in this scenario are not yet released.  They will be available in an upcoming weekly 
release of Rosetta.  This section is included as a reference. 
 
This scenario presents a set of de novo model building tools, for building protein models into near-atomic-
resolution density data when crystal structures of identifiable homologues are not available.  Like Scenario 
1, this tutorial uses the trans-membrane region of TRPV1 (M. Liao, E. Cao, D. Julius, Y. Cheng, Nature, 
2013) as a running example. 
 
This tutorial includes three folders: 
scripts/ 
    Wrappers for calling rosetta executables, setting up jobs, and results processing. 
 
input_files/ 
    Files necessary for running the protocol on an example case, the 3.4A TRPV1 cryo-EM 
    map (the exact commands used in the manuscript). 
 
denovo_model_building/ 
    The directory where jobs will be run. Calculations are split into several steps, with 
    each step run in an individual subfolder: 
 

Step1_Place_fragments_into_density/ 
Step2.1_Calculate_overlap_scores/ 
Step2.2_Calculate_nonoverlap_scores/ 
Step3_Simulated_annealing_Monte_Carlo_sampling/ 

 
To begin, edit the configuration file, denovo_model_building_scripts.cfg 
     
   demo_dir = absolute_path_for_this_demo_in_your_work_station 

 
A. Dock Fragments into density 
 
In this step, we dock local backbone fragments into the EM density.  Fragments for a particular protein may 
be downloaded from Robetta (www.Robetta.org).  For this case, the necessary fragment files have been 
included. 
 
Note: As this step is particularly time consuming, it is recommended to run on a moderately large cluster 
(64+ compute cores).  Submission scripts for the condor queuing system are included; it should be 
relatively straightforward to convert these scripts for other queuing systems. 
 
Go to the directory, denovo_model_building/Step1_Place_fragments_into_density/condor_jobs/, and run 
the command: 
 ./setup_placement_condor_jobs.sh 

 
This will setup a single condor job for each residue in the protein (in this example, 307 jobs).  Then, to 
submit the jobs, simply run: 
sh submit_placement_condor_jobs.sh    
 



For running on a different system, this file will need to be updated to point to the new sequence, map, and 
fragment files. 
 
After jobs finish, run a script to ensure all output has been produced.  Go to the folder            
denovo_model_building/Step1_Place_fragments_into_density/condor_jobs/ and run the command: 
./find_out_unfinished_placement_jobs.sh  | grep -v input_files    

 
This script will print out all residues that have not finished running (or died unexpectedly).  If you need to 
submit one of these jobs, go to the relevant folder, remove running.lock and run condor_submit 
placement_condor_job.  If interrupted, the code will resume from where it left off. 
 
Once fragment placement is complete, we cluster and extract the best-scoring candidate placements.  Go to 
the directory denovo_model_building/Step1_Place_fragments_into_density/condor_jobs/ and run the 
command: 
 ./setup_cluster_and_extract_condor_jobs.sh 
 
This will again setup a single condor job for each residue in the protein.  To launch this job, run the 
following command on the condor system: 
sh submit_cluster_and_extract_condor_jobs.sh 

    
 
Finally, once this step is complete, the output will appear in the following directory: 
denovo_model_building/Step1_Place_fragments_into_density/candidate_fragment_placements/ 
 
The output from this step is 50 candidate placements for each residue. In this example, TRPV1, it should 
contain 50*307=15350 placements. 
 
Note: If the number of extracted fragments does not match, check if placement jobs haven't finished or if 
clustering failed, and rerun steps the corresponding job. 
 
B: Precompute fragment compatibility scores 
 
In this step, we precompute the compatibility scores of all pairs of fragments identified in the previous step.  
This is subdivided into two jobs, the first computes the overlap scores and the second the nonoverlap scores. 
 
As with the previous step, this will launch a single compute job for each residue in the protein.  Submission 
scripts for the condor queuing system are included; it should be relatively straightforward to convert these 
scripts for other queuing systems. 
 
To calculate overlap scores, go to the directory denovo_model_building/ 
Step2.1_Calculate_overlap_scores/ and run the command: 
  ./setup_condor_jobs.sh 
 
This will setup a single condor job for each residue in the protein.  To launch this job, run the following 
command on the condor system: 
 ./sh submit.sh 
 
For nonoverlap scores, the setup is the same.  Go to the folder denovo_model_building 
/Step2.2_Calculate_nonoverlap_scores and run the command: 
  ./setup_condor_jobs.sh 



 
This will setup a single condor job for each residue in the protein.  To launch this job, run the following 
command on the condor system: 
 ./sh submit.sh 
 
 
C. Run Monte Carlo sampling to identify maximally consistent subset of fragments 
 
In this step, different combinations of fragments are combinded to identify the maximally compatible 
subset of placements.  These are run in many parallel Monte Carlo trajectories, in order to identify a 
mutually consistent subset. 
 
First, we set up the score tables.  This step simply combines the results from steps 2.1 and 2.2.  Go to the 
directory ./denovo_model_building/Step3_Simulated_annealing_Monte_Carlo_sampling/ and run the 
command: 
./setup_idx_files.sh 

 
Running this script will produce four output files, which serve as inputs for the next step of the protocol: 

• frags.idx1: an index of fragments from candidate_fragment_placements/ 
• all_density.idx1: the density score for each fragment  
• all_nonoverlap_scores.weighted.idx1: closability score and clash score 
• all_overlap_scores.idx1: overlap score 

 
Given these inputs, we next run Monte Carlo sampling.  Go to the directory 
denovo_model_building/Step3_Simulated_annealing_Monte_Carlo_sampling/ and run the command: 
./run_samc_sampling.sh [number_of_jobs] 

 
This step can be run on one machine, and will launch "number_of_job" threads on the node on which it is 
run.  This may be launched on several machines to generate additional trajectories (the outputs will not 
collide). 
 
Finally, we use the results of these independent Monte Carlo trajectories in order to assemble a partial 
model.  This will combine converged regions from the low-energy trajectories, producing a high-
confidence partial model.  Go to the directory ./denovo_model_building/ 
Step3_Simulated_annealing_Monte_Carlo_sampling/ and run the command: 
./assemble_partial_model.sh 

 
The output from this step will be in the pdb file: 
denovo_model_building/Step3_Simulated_annealing_Monte_Carlo_sampling/average_model/average.pdb 
 


