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Nucleic acid recognition by tandem helical repeats
Emily H Rubinson and Brandt F Eichman

Protein domains constructed from tandem a-helical repeats

have until recently been primarily associated with protein

scaffolds or RNA recognition. Recent crystal structures of

human mitochondrial termination factor MTERF1 and Bacillus

cereus alkylpurine DNA glycosylase AlkD bound to DNA

revealed two new superhelical tandem repeat architectures

capable of wrapping around the double helix in unique ways.

Unlike DNA sequence recognition motifs that rely mainly on

major groove read-out, MTERF and ALK motifs locate target

sequences and aberrant nucleotides within DNA by resculpting

the double-helix through extensive backbone contacts.

Comparisons between MTERF and ALK repeats, together with

recent advances in ssRNA recognition by Pumilio/FBF (PUF)

domains, provide new insights into the fundamental principles

of protein–nucleic acid recognition.
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Introduction
Domains constructed from tandem repeating a-helical

motifs are found in all kingdoms of life and serve a variety

of functions. Each repeat spans �25–45 residues and

consists of 2–3 helices with a conserved hydrophobic

core, and stack in parallel arrays of 3–25 repeats to form

extended superhelical or C-shaped structures. Five struc-

tural classes of tandem a-helical repeats have been

defined: tetratricopeptide (TPR), leucine-rich variant

(LRV), ankyrin (ANK), armadillo (ARM), and Hunting-

ton/Elongation/A subunit/Target-of-rapamycin (HEAT)

repeats (Supplementary Figure S1) (previously reviewed

in [1–3]). These motifs are often associated with protein-

binding and scaffolding functions, with specificity for a

particular ligand dictated by the particular repeat stacking

arrangement [4]. For example, superhelical arrays of

HEAT repeats are often found in nuclear transport and

protein synthesis assemblies that bind their protein cargo

within the inner channel of the superhelix [5–7].

ARM and HEAT repeats in particular are emerging as

important nucleic acid binding motifs. ARM repeats

consist of a two-turn a-helix (H1) perpendicular to two

longer antiparallel helices (H2 and H3) that stack to form

a right-handed superhelix [8,9]. HEAT motifs are pairs of

antiparallel a-helices, with a kinked helix H1 that mimics

ARM helices H1 and H2 (Figure S1) [2,10]. The HEAT

repeats of Ro autoantigen bind misfolded, small RNAs,

and the ARM-like repeat protein Rcd-1 can bind nucleic

acids in general [11,12]. The best documented nucleic

acid binding helical repeat is the ARM-like PUF motif,

which binds ssRNA with exquisite sequence specificity

(recently reviewed in [13,14]). In addition to RNA recog-

nition, HEAT repeats form expansive domains in chro-

matin-remodeling proteins, including the DNA-damage

response protein kinases ATM, ATR, and DNA-PK

[15,16]. Cryo-EM and a recent crystal structure of

DNA-PKcs implicate the HEAT architecture in mediat-

ing interactions with both Ku-80 and DNA [17��,18��].
Very recently, crystal structures of human mitochondrial

transcription termination factor MTERF1 and bacterial

DNA repair protein AlkD provided details for two new

ARM-like and HEAT-like motifs in complex with DNA.

Here, we compare the different mechanisms of double-

stranded DNA and single-stranded RNA recognition by

PUF, MTERF and ALK repeats.

PUF repeats
Drosophila melanogaster PUMILIO (PUM) and Caenorhab-
ditis elegans fem-3 binding factor (FBF), both homologs of

human PUMILIO1 (PUM1), are the founding members

of the PUF family of translational repressors [13,19,20].

These proteins bind specific sequences in the 30 untrans-

lated regions of mRNA and subsequently disrupt trans-

lation or stimulate degradation of the transcripts. PUF

proteins contain eight a-helical repeats, each composed

of approximately 36 residues that form a triangular 3-helix

bundle similar to ARM repeats (Figures 1a and 2a)

[21,22]. Unlike superhelical ARM domains, however,

PUFs stack into a crescent shape with the H2 helices

lining the concave surface (Figure 1a). This surface forms

a binding platform for single-stranded RNA, in which side

chains at defined positions of each PUF repeat form

alternating hydrogen bonding and stacking interactions

with the nucleobases [23] (Figure 2b). Amino acid pos-

itions 12 and 16 make sequence specific contacts to the

Watson–Crick or Hoogsteen edges of each base, and

residue 13 intercalates between the bases (Figures 2c

and d and S3a) [23,24�,25��,26�,27].
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Structures of several PUF proteins bound to target and

non-target RNAs reveal a ‘code’ for RNA sequence

recognition [14,28]. PUF proteins recognize two con-

served RNA regions within an 8-nucleotide sequence.

C-terminal repeats 6–8 contact a 5-UGU triplet

(Figure 2c) and repeats 2–3 recognize an internal AU

dinucleotide (Figure 2d) [23,25��]. Selectivity for a

particular sequence arises from hydrogen bonds to the

bases outside of the UGU and AU motifs, with adenine

recognized by cysteine and glutamine, guanine by serine

and glutamate, uracil by asparagine and glutamine, and

cytosine by arginine and serine [23,25��,29,30�,31�].

Protein–RNA stacking is also important to RNA

binding affinity and specificity [32]. Mutating either

hydrogen-bonding or stacking residues of a given repeat

can alter sequence specificity [29,30�,32].

Variations in the PUF scaffold allow for different RNA

binding modes. Typically, each of the eight PUF repeats

contacts a single base [23]. Structures of C. elegans FBF-2

and yeast Puf4p, however, show that these proteins can

accommodate 9-nucleotide RNA sequences as a result of

decreased curvature in the protein (Figure 2e), which may

be attributed to an extended helix and loop in a centrally
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The three nucleic acid binding helical repeats—PUF, MTERF, and ALK. Crystal structures of PUM1-ssRNA (PDB ID code IM8Y) (a), MTERF1-dsDNA

(PDB ID code 3MVA) (b), and AlkD-dsDNA (PDB ID code 3JXZ) (c) are shown on the left with one helical repeat colored by helix (orange, green, and

yellow). The middle panel shows two orthogonal views of the repeating unit. The schematic on the right illustrates the contacts between each motif and

ssRNA (a) or dsDNA (b) and (c).
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located repeat [25��,26�]. In order to maintain contacts

with UGU and AU consensus sequences, one or more

nucleotides are flipped away from the protein (Figure 2f).

Similarly, a single flipped nucleotide was observed in

structures of human PUM1 bound to noncognate 9-mer

RNAs, in this case without distortion to the protein itself

[24�]. Finally, yeast Puf3 binds a 10-nucleotide sequence

with two additional cytosines immediately 50 to the con-

served UGU sequence. To accommodate the 50-terminal

cytosine, which is necessary for gene regulation, into a

specialized binding pocket at the C-terminus, the penul-

timate cytosine is flipped out into the solvent [27].

MTERF repeats
Recent structures from the MTERF family of mitochon-

drial gene transcription and replication regulators [33]

have revealed a new motif capable of binding nucleic

acids. MTERF1, a transcription termination factor

specific for a 28-nucleotide region near the 30-end of

the 16S rRNA gene [34,35], and MTERF3, a negative

regulator of transcription that interacts with the mito-

chondrial promoter region with no apparent sequence

specificity [36], are both constructed from �30-residue

helical repeats that resemble a left-handed ARM motif

[37��,38��,39�,40]. Each so-called MTERF repeat con-

sists of two antiparallel a-helices (H1 and H2) followed by

a short 310 or a-helix (H3) perpendicular to H1

(Figure 1b). Conserved proline residues between helices

H2 and H3 impart a left-handed crossover; these prolines

are not present in the right-handed ARM and PUF motifs

(Figure S3) [39�,40]. The left-handed MTERF repeats

stack together to form a right-handed superhelical protein

with H3 helices lining the inside, positively charged

surface (Figure 3a and S2a).

Structures of MTERF1 bound to duplex DNA containing

the termination sequence were determined indepen-

dently by two groups and illustrate how the MTERF

architecture anchors itself at the target sequence by

wrapping around the DNA major groove and partially

denatures the duplex [37��,38��]. The structure deter-

mined by Yakubovskaya et al. shows a 22-base pair,

contiguous DNA helix running through the central chan-

nel of the MTERF superhelix (Figure 3b) [37��]. The

nine MTERF repeats make a complete turn around the

DNA with a pitch of �70 Å and a footprint of 22 nucleo-

tides. Each repeat binds to the major groove side of DNA

primarily through electrostatic interactions, in which the

N-terminus of H1 and the C-terminus of H2 contact the

backbones from opposing strands and the H3 helix lies in

the groove (Figure 1b). The bound DNA is mainly in a B-

form conformation, except for a slight 258 bend and a

partially unwound 3-nucleotide segment at the center of

the duplex. In the Jiménez-Menéndez et al. structure,

which was determined using a 15-base pair DNA

sequence [38��], two symmetry-related DNA molecules

are bound at the termini of the superhelix in an identical

position as the B-form segments in the continuous DNA

structure, leaving a gap that corresponds to the unwound

central region (Figure 3c).

In the unwound region of the DNA, three nucleotides are

flipped out of the duplex and stacked against Arg162,

Phe243, and Tyr288 (RFY) side chains (Figure 3d) [37��].
A structure of an RFY ! AAA triple mutant, which

eliminates the stacking interactions with extrahelical

DNA, showed the same DNA denaturation as the

wild-type protein even though the three nucleotides

remain stacked in the duplex. Thus, base flipping is

not a requirement for helical distortion by MTERF

repeats. Rather, base flipping by MTERF1 was shown

to be important for stable binding to its specific recog-

nition sequence and consequently for termination activity

[37��]. Sequence recognition by MTERF1 is largely

determined by five arginine residues that contact gua-

nines in the termination sequence (Figure 3e). Mutation

of these residues affects DNA binding to varying degrees,

and all are essential for transcriptional termination

activity [37��].

ALK repeats
Bacillus cereus AlkC and AlkD are recently discovered

DNA glycosylase enzymes that catalyze the excision of

positively charged alkylated purine bases from DNA [41].

DNA glycosylases initiate the base excision repair path-

way by locating chemically modified nucleobases within

DNA, followed by hydrolysis of the N-glycosidic bond to

create an abasic site that is processed by other enzymes in

the pathway that synthesize a new patch of DNA. Unlike

other glycosylases, AlkD is constructed from pairs of

antiparallel helices that stack into a short left-handed

solenoid (Figures 1c, 4a and S2b), and defines a new

structural superfamily of DNA repair enzymes [42�,43�].
Despite similarity to HEAT and TPR motifs (Figure S1),

the repeats of AlkD, which we term ALK repeats to

distinguish them from their protein scaffolding cousins,

are unique in structure and binding properties. ALK

motifs, defined by AlkD repeats 2–6, span �35 residues

and contain a slight right-handed twist between helices

H1 and H2 (Figures 1c, 4a, S2b). The H1 helix is shorter

and straighter than the corresponding helix in HEAT

repeats. The H2 helices line the concave surface of the

protein and each contributes several basic residues that

mediate interaction with dsDNA (Figure 1c and S3)

[44��]. The protein makes a half turn around the DNA

duplex with a footprint of 12 nucleotides, with all repeats

but one (R2) directly contacting the DNA (Figure 4a,b).

Depending on their position along the helical axis, ALK

repeats contact the backbone of one strand or the other

and are thus less specific than MTERF motifs, which

contact both strands and the major groove from every

repeat (Figure 1b and c). Repeat 1 is unique in that

helices H1 and H2 have a left-handed twist and are

separated by an inserted helix that helps to anchor the

Nucleic acid recognition by tandem helical repeats Rubinson and Eichman 103
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Figure 2
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PUF repeat interactions with ssRNA. (a)–(d) Crystal structures of hsPUM homology domain bound to NRE2-10 RNA (PDB ID code 1M8Y). (a) The overall

protein architecture is colored by PUF repeat, with ssRNA in silver. (b) Protein residues at positions 12, 13, and 16 in each repeat that interact with RNA

bases are shown as green sticks. RNA is colored gold, and hydrogen bonds are shown as dashed lines. (c) Close-up of UGU recognition by PUF repeats 6,

7, and 8, colored as in panel b. The numbers in gray circles denote canonical amino acid positions 12, 13, and 16 within each repeat. (d) AU recognition by
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protein to the DNA, and interestingly contributes the

only minor groove and base-specific contact from Tyr 27

(Figure 4 and S2 and S3).

Structures of AlkD bound to chemically modified DNA

revealed an intriguing mechanism for detecting DNA

damage that relies on helical distortion rather than direct

interaction with the lesion [44��]. Three AlkD-DNA

complexes were determined using short oligonucleotides

(10–12 base pairs) containing 3-deaza-3-methyladenine

(3d3mA, substrate analog), tetrahydrofuran (THF,

product analog), and an inhibitory G�T mismatch

(Figure 4b–e). The duplex arms flanking the lesions

are essentially B-form with varying degrees of pertur-

bation to the modified base pairs. The 3d3mA�T and G�T
base pairs are sheared with the opposite thymine rotated

into the minor groove toward the protein (Figure 4c). In

the product complex, however, both THF and the oppo-

site thymine are completely flipped out of the duplex,

with the THF facing the solvent and the thymine

abutted against the protein surface (Figure 4e). As a

consequence of the bulge, the duplex collapses to main-

tain base stacking and creates a distortion in the DNA

backbone relative to the substrate structure. In all three

structures, the backbone around the extrahelical thymine

on the undamaged strand is buried deep in a conserved

cleft at the center of the protein and stabilized by a series

of electrostatic and van der Waals contacts (Figure 4c and

e). The protein does not change conformation upon

binding DNA, whereas the conformation of the G�T
mispair bound to AlkD was significantly different than

a free G�T wobble pair observed in DNA alone. Thus,

this cleft resculpts the DNA backbone of the undamaged

strand in order to trap the protein against a destabilized

base pair. Mutation of residues within this cleft

decreased DNA binding activity and catalytic activity

[44��].

Locating specific targets by direct read-out
and nucleic acid resculpting
PUF, MTERF, and ALK domains employ unique mech-

anisms to locate their target nucleotide sequences. PUF

proteins are the most specific with a one-to-one correspon-

dence between each repeat and a single base, wherein a

single mutation to a base-binding or stacking residue can

alter RNA specificity (Figure 2). The extensive network of

nucleobase-side chain intercalation and hydrogen bonding

helps explain the low nM binding affinities between

PUF domains with their cognate RNA sequences [29].

MTERF1, on the other hand, recognizes a 28-base pair

sequence with a Kd of 0.2 mM using a combination of

sequence specific and non-specific interactions [37��].
Each repeat contacts both strands over a 5–6 base pair

segment and penetrates the major groove in a manner

reminiscent of tandem zinc finger modules. The collective

MTERF assembly imposes a significant distortion to the

DNA duplex, which exposes the major groove to

sequence specific interactions from five conserved argi-

nine residues (Figure 3e). The role of each of the five

arginine residues in determining MTERF1 specificity

for its termination sequence remains to be determined,

although some are likely to contribute more to general

DNA binding since superposition of MTERF3 onto the

MTERF1-DNA structure (Figure 3f) reveals that the

positions of three of these arginines (169, 202, and 251) at

the N-terminal half of MTERF1 are conserved in

MTERF3 (Arg181, His213, Arg257). AlkD is the least

specific of the three motifs and relies predominantly on

electrostatic contacts with the phosphate backbone for

DNA binding (Kd = 2 mM) [43�,44��]. The lack of

specific contacts to AlkD’s damaged base targets, as well

as the distortion imposed on the DNA backbone, strongly

suggests that the protein probes for thermodynamically

weak points in the DNA that result from alterations in

base stacking or base pairing within mismatched or

modified bases [44��].

Base flipping is a critical element of RNA and DNA

binding specificity among PUF, MTERF, and AlkD

proteins. Several PUF proteins flip one or more nucleo-

tides into the solvent as a means of enhancing specificity

or providing a recognition element for a partner protein

[25��]. Both MTERF1 and AlkD promote extrahelical

DNA bases on opposing strands. This base flipping

mechanism helps stabilize the protein–DNA complexes

and, consequently, is important for the respective

biological functions of both proteins [37��,44��]. Stable

binding by MTERF1 presumably interferes with the

transcription  elongation machinery, and base flipping by

AlkD holds the damaged base captive in an environ-

ment that facilitates catalysis. Unlike other base-flip-

ping enzymes, neither protein intercalates residues into

the duplex in order to stabilize the flipped nucleotides.

In MTERF1, the unwound duplex is maintained by

base stacking side-chains and the extensive binding

surface created by nine MTERF repeats, while in the

AlkD-DNA structures the duplex collapses on itself in

order to preserve stacking interactions. Further work is

required to determine whether MTERF and ALK

domains recognize pre-distorted DNA or impose tor-

sional strain on the DNA from their superhelical protein

scaffolds.

Nucleic acid recognition by tandem helical repeats Rubinson and Eichman 105

(Figure 2 Legend Continued) PUF repeats 2 and 3, annotated the same as panel c. (e)–(f) Puf4p bound to 9-mer HO RNA (PDB ID code 3BX2) [26�]. (e)

Superposition of Puf4p:HO RNA (magenta) and hsPUM:NRE2-10 RNA (green). The protein is rendered as a Ca trace and the RNA is shown as sticks. The

extended curvature between repeats 3 and 4 of Puf4p allows it to bind a nine-nucleotide RNA sequence with an extrahelical base (U7, highlighted with an

arrow) [26�]. (f) Detailed view of the flipped out uracil (magenta) in the Puf4p structure. RNA intercalating side chains are highlighted with yellow asterisks.
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DNA binding by MTERF repeats. Each panel shows the crystal structure of human MTERF1 bound to the termination sequence (PDB ID code 3MVA)

[37��]. (a) Electrostatic surface potential (blue, positive; red, negative) of MTERF1 showing a high degree of positive charge inside the protein

superhelix. (b) Orthogonal views of MTERF1 (colored by repeat) wrapped around the DNA duplex (silver). Nucleotides flipped out of the DNA are

colored magenta. (c) Superposition of the Yakubovskaya et al. (PDB ID code 3MVA, green) [37��] and Jiménez-Menéndez et al. (PDB ID code 3N7Q,

red) [38��] MTERF1 structures, showing the correspondence between the continuous 22-bp DNA (green tubes) and two symmetry-related 15-bp DNA

(red tubes). The termination sequence recognized by MTERF1 is shown to the right, with oligonucleotides used for crystallization of the respective

structures outlined in green and red. The protein footprint in each structure is denoted by the bold vertical lines. The flipped nucleotides are highlighted

Current Opinion in Structural Biology 2012, 22:101–109 www.sciencedirect.com
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(Figure 3 Legend Continued) yellow and the guanine residues recognized by the protein are shaded gray. (d) Details of the unwound region of DNA in the

MTERF1 complex. Extrahelical nucleobases are magenta, other DNA is gold, and side chains important for stabilization of the extrahelical nucleotides are

green. Hydrogen bonds are shown as dashed lines. (e) Sequence recognition by five arginine residues (green sticks), which form specific contacts with

guanines (gold sticks) in the termination sequence. Flipped bases are magenta. (f) Superposition of MTERF1-DNA (PDB ID code 3MVA, green) and

unliganded MTERF3 (PDB ID code 3OPG, magenta) [39�]. MTERF1 and MTERF3 contain 9 and 7 MTERF repeats, respectively.
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Crystal structures of AlkD bound to various forms of modified DNA. (a) Orthogonal views of AlkD (colored by repeat) wrapped around a DNA duplex

(silver) containing a THF-T bulge (magenta) (PDB ID code 3JXZ). (b) and (c) Orthogonal views of AlkD (green) bound to 3d3mA�T-DNA (gold, PDB ID

code 3JX7). The modified 3d3mA�T base pair is colored magenta. Hydrogen bonds are shown as dashed lines. (d) and (e) The same views of AlkD in

complex with abasic THF�T-DNA.
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Conclusions
The recent advances in RNA sequence recognition by

PUF and the discovery of DNA binding by MTERF

and ALK motifs open the door for engineering new

classes of proteins specific for both RNA and DNA

sequences. Indeed, PUF engineering has already begun

[14,30�,31�], and successful design of proteins that inter-

act with specific protein/peptide binding partners based

on TPR, ANK, LRR/LRV, ARM, and HEAT motifs

has flourished in the past ten years [3,45–49]. In addition,

the unique characteristics of PUF, MTERF, and ALK

motifs may aid in the discovery of nucleic binding

elements within protein domains known to contain tan-

dem helical arrays.
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Figure S1.  Tandem helical repeat proteins.  (a) Ribbon representations of five classical 

repeat structures and their corresponding individual repeating unit colored by helix: 

tetratricopeptide repeats (TPR) from protein phosphatase 5 (PDB ID code 1A17), 

armadillo (ARM) repeats from β-catenin (PDB ID code 1JDH),  HEAT repeats from 

protein phosphatase 2A (PP2A) (PDB ID code 1B3U), ankyrin (ANK) repeats of IκBα 

(PDB ID code 1NFI), and leucine-rich variant (LRV) motif (PDB ID code 1LRV).   
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Figure S2. Definitions of handedness of pairwise helical crossovers and the 

superhelical protein architectures that they typically form.  (a) MTERF repeats are left-

handed arrangements of helices H1 (green) and H2 (yellow) and stack to form right-

handed superhelical proteins (grey). (b) Right-handed ALK motifs form left-handed 

superhelical proteins in a similar manner to most TPR, ARM, HEAT, ANK, and LRV 

repeats. 



Figure S3.  Structures of individual nucleic acid binding helical repeats.  (a) PUF

repeats of the homology domain of human Pumilio1 (HsPUM-HD) (PDB ID code 1M8Y),

(b) MTERF repeats of MTERF1 (PDB ID code 3MVA), (c) MTERF repeats of MTERF3 

(PDB ID code 3M66) and (d) ALK motifs of AlkD (PDB ID code 3JXZ).  On the left are 

cylindrical representations of each protein colored by repeat. Each repeat is shown 

individually as ribbons on the top of each panel.  On the bottom are structure-based 

sequence alignments of individual repeats.  Positions 12, 13, and 16 in PUF repeats are

labeled.  Hydrophobic residues that line the interface between helices are highlighted 

gray, residues that contact the phosphate-backbone are highlighted yellow, base 

binding residues, including the sequence specific arginines in MTERF1 and putative 

arginine counterparts in MTERF3, are highlighted green.  Specific prolines that create 

key turns in the repeats to define the third helix of MTERF1, hPUM-HD, and MTERF3

are highlighted blue.  Catalytic residues in AlkD and base stacking residues in MTERF1 

and hPUM-HD are in boldface, and positively charged residues that line the concave 

clefts of the proteins are boxed.   
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