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Abstract

We describe the Multiscale Modeling Tools for Structural Biology (MMTSB) Tool Bigp(//mmtsb.scripps.edu/software/mmtsbToolSet.
html), which is a novel set of utilities and programming libraries that provide new enhanced sampling and multiscale modeling techniques
for the simulation of proteins and nucleic acids. The tool set interfaces with the existing molecular modeling packages CHARMM and
Amber for classical all-atom simulations, and with MONSSTER for lattice-based low-resolution conformational sampling. In addition, it
adds new functionality for the integration and translation between both levels of detail. The replica exchange method is implemented to
allow enhanced sampling of both the all-atom and low-resolution models. The tool set aims at applications in structural biology that involve
protein or nucleic acid structure prediction, refinement, and/or extended conformational sampling. With structure prediction applications
in mind, the tool set also implements a facility that allows the control and application of modeling tasks on a large set of conformations in
what we have termed ensemble computing. Ensemble computing encompasses loosely coupled, parallel computation on high-end parallel
computers, clustered computational grids and desktop grid environments.

This paper describes the design and implementation of the MMTSB Tool Set and illustrates its utility with three typical examples—scoring
of a set of predicted protein conformations in order to identify the most native-like structures, ab initio folding of peptides in implicit
solvent with the replica exchange method, and the prediction of a missing fragment in a larger protein structure.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction improve conformational sampling efficiency for molecular
modeling and dynamics applications. Generalized ensemble
The success of computational methodologies in chemistry sampling techniques, for example, involve parallel simula-
that have been developed over the last four decades is retions of a system of interest with different weight factors
flected in a multitude of academic and commercial programs coupled by a Monte Carlo simulation protoddt7]. Vari-
available today. CHARMM1], Amber [2], and Gaussian  ants of this sampling scheme are being used increasingly
[3] are typical examples of this development, and enjoy wide in the study of long time scale phenomena such as protein
usage in both academia and industry. Most of these programgolding [8—13]. These methods could be implemented in the
that have emerged from this period are highly functional, form of separate, new programs or by modifying existing
well optimized, and sufficiently integrated within their in- simulation packages. In a more practical implementation,
tended range of applications. However, because of a highhowever, existing programs could be used to run each of the
level of complexity, proprietary command interfaces and in- simulations while an external interface layer is utilized to
put/output formats these programs often tend to be inflexible couple and control the individual simulations and facilitates
when extensions and/or interoperability with other existing the enhanced sampling methodology. This approach would
programs are needed. While this is a common problem in theallow greater flexibility in using the same enhanced sam-
integration of heterogeneous legacy software componentspling method with different simulation programs, and avoid
[4], such issues have become especially apparent in the im-difficulties in modifying existing large software packages
plementation of new enhanced sampling techniques applieddirectly.
to the conformational sampling of biopolymers. These novel ~ Another way to improve conformational sampling is
simulation protocols combine existing methods in order to through multiscale modeling techniques. The computational
modeling of biological macromolecules commonly revolves
"+ Corresponding author. Tek:1-858-784-8035: fax:-1-858-784-8688,  around structure representations in atomic or near-atomic
E-mail addressbrooks@scripps.edu (C.L. Brooks IlI). detall, with a classical description of physical interactions.
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Such models have been quite successful in complementingmethods based on existing simulation programs. This
experimental data with structural, dynamic, and energetic package, called Multiscale Modeling Tools for Structural
information, but involve substantial computational resources Biology (MMTSB) Tool Set (available ahttp://mmtsb.
for larger systems, or when long time scales have to be con-scripps.edu/software/mmtsbToolSet.htmlis an effort
sidered. In particular, studies of protein folding, structure within the NIH Research Resource for Multiscale Modeling
prediction applications, or the formation and interaction of Tools for Structural Biology and follows the implementa-
supramolecular assemblies become prohibitively expensivetion strategy outlined above by integrating the existing pro-
with models at atomic detail. Alternatively, coarser molec- grams through an interface layer while providing missing
ular representations with few virtual particles, often also functionality as necessary. Interpreted scripting languages
projected onto lattices, have yielded meaningful results in such as Perl or Python are particularly suitable for building
such case$§l4]. Unfortunately, the reduced level of detail interface layers since they combine ease of use and porta-
often cannot provide the same accuracy as all-atom modelsbility with a high level of functionality for addressing the
For example, it is quite feasible to generate native topolo- complex system-oriented but computationally less intensive
gies from folding simulations using simple lattice models; tasks[20]. Similar, scripting-language based designs have
however, it is much more difficult to actually discern na- been used successfully in other related applications such
tive or near-native conformations from other, non-native as the molecular modeling tool kit (MMTK]21] or the
conformations that are also generated with the same modelBioper! toolkit [22].
[15]. In such cases, one may instead reconstruct all-atom The idea of the MMTSB Tool Set is not just to provide
structures from reduced representatifi®], and use these a set of user programs for certain enhanced and multi-
more detailed models to regain a higher level of accuracy scale sampling modeling tasks, but also a programming
with an all-atom scoring function that can then distinguish workbench, which provides the framework for the devel-
native from non-native conformatiofd7,18] This idea opment of new applications that require the interplay of
represents the core of more general multiscale modeling ap-multiple simulation packages. It focuses on applications
proaches; lower resolution models are used to extend sam-n the area of protein structure prediction, protein folding,
pling to longer time scales or larger system sizes, whereasand large-scale model building and refinement of proteins
higher-resolution models provide the energetic accuracy. and nucleic acids for which enhanced and multiscale sam-
While the structure prediction example above describes apling techniques are particularly useful. As a subset of
single pass of low-resolution sampling followed by the use its functionalities, the tool set also provides a common
of all-atom models for improved accuracy, multiscale mod- user interface to all-atom modeling via CHARMML1] or
eling can also be done in a continuous fashion, for example Amber [2] and reduced-model lattice modeling via MON-
through Monte Carlo type simulations that repeatedly move SSTER[19]. Furthermore, the tool set incorporates a num-
between low- and high-resolution models for extended ber of support functions that are motivated by multiscale
sampling on an energy landscape that is closely coupled tomodeling applications, but are certainly useful for other
the interactions of the high-resolution model. The imple- purposes as well. They include algorithms for translating
mentation of multiscale modeling methods faces problems quickly and accurately between low- and high-resolution
similar to these seen in the implementation of enhanced models and methods for the organization, manipulation,
sampling methods, but usually involves the combination of and evaluation of large sets of conformations for a given
multiple programs rather than a single simulation program. protein, in what may be referred to as ensemble comput
All-atom modeling of biological macromolecules is possi- ing. Ensemble computing applications greatly benefit from
ble with a number of standard molecular modeling packagesparallel execution since they are inherently parallel in na-
such as CHARMM or Amber, but these programs usually ture and typically require relatively little communication.
do not fully support low-resolution models and especially The tool set provides basic parallel platform support im-
lattice-based representations. On the other hand, simulatiorplemented on the scripting language level, which makes it
programs for low-resolution models, such as the lattice largely platform-independent and does not require specific
simulation program MONSSTER9], do not usually allow communication libraries.
all-atom modeling. Both types of applications are fairly In the following, we will first describe the architecture
complex, so that the option of simply merging them is not and components of the MMTSB Tool Set in more detail. We
very attractive. As for the implementation of enhanced sam- will then continue by providing examples of how the tool
pling methods, a better solution would be to wrap simulation set may be used for typical enhanced and multiscale sam-
programs for all-atom and low-resolution models through pling applications in protein structure prediction, structure
a common interface layer and provide translation routines evaluation, and structure refinement examples. We conclude
between both models as the basis for building multiscale by discussing how this architecture may be extended to new
applications. tasks and applications.

In this paper, we describe a new set of utilities and

programming libraries for the implementation of compu- 1 e note that the tool set is supported with versions of CHARMM
tationally distributed enhanced and multiscale sampling beyond c29b and Amber version 7.
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2. Software description Table 1
MMTSB Tool Set Perl packages implementing the core functionality and
2.1. Architecture serving as a programming library
Package name Functionality
Common modern scripting Ianguages that would be ap- Molecule All-atom representation of molecule objects
propriate for building complex applications are Perl and cHARMM Interface to CHARMM molecular modeling
Python. We decided to use Perl as the (still) more widely program
used scripting language in order to minimize portability is- Amber Interface to Amber molecular modeling
sues and to facilitate user extensions as much as possible, program . .
. — . nalyze Structural analysis of molecular conformations
As depicted inFig. 1, the architecture of the MMTSB Tool ¢ ster Clustering of molecular conformations
Set consists of a collection of object-oriented classes, calledsicHo Reduced, side chain based representation of
packages in Perl, that implement all of the core functionali- molecules
ties. These packages are used by a number of executable usé&eduence St?ﬂi‘:‘r’eé‘iﬁgrsrsgﬁs:ces and secondary
programs, Whlch mainly parse Command Im.e. argument.s a'ndMONSSTER Interface to MONSSTER lattice simulation
call the appropriate functions to build specific applications. program
In addition to the simulation programs CHARMM, Amber, simData, Ensemble Ensemble computing
and MONSSTER, a few other compiled-language programs JobClient, JobServer Parallel execution for ensemble computing
are also included as part of the tool set, and wrapped through applications

Perl, for computationally more demanding tasks that can- ReXClient, RexServer  Replica exchange simulations
GenUtil General utility functions

not be done efficiently in Perl alone. This program design Server, Client General server/client implementation
maximizes flexibility and reusability. The packages alone
can be used as a programming library for a variety of tasks
that may go well beyond the intended applications of the types of problems either based on the existing package rou-
MMTSB Tool Set. For example, one may use the interface tines or by adding new functionality. The user utilities could
to CHARMM to take advantage of Perl’s advanced scripting also be replaced by a different type of user interface or in-
capabilities for building complex modeling applications that tegrated into other types of applications without significant
require additional functionality and go beyond the capabil- additional effort.

ities of CHARMM'’s own scripting language. On the other

hand, the command-line oriented user-level utilities in the 2.2. Components

MMTSB Tool Set are intended to cover a wide range of ap-

plications with a special focus on enhanced and multiscale In this section, we provide an overview over the various
sampling protocols. Furthermore, since these user-level util-components of the MMTSB Tool Set. The packages and
ities represent little more than a user interface to the pack- user programs are listed ffables 1 and Zespectively. This
age routines, they can easily be customized to address newpaper is meant to give an overview of the MMTSB Tool Set

MONSSTER

Amber CHARMM Sequence

N

Molecule

/

[ minAmber.pl ] [minCHARMM.pIJ

rebuild.pl

latticesim.pl

Fig. 1. Representative view of the MMTSB Tool Set architecture. External programs CHARMM, Amber, and MONSSTER are shown in blue, Perl
packages in magenta, and Perl user utilities in green.
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Table 2

Main MMTSB Tool Set command-line oriented user utilities

Utility

Functionality

enerCHARMM.plenerAmber.pl
minCHARMM.p] minAmber.pl
mdCHARMM.pl mdAmber.pl
convpdb.pl

complete.pl

mutate.pl

rms.pl Isdfit.pl, contact.p) rgyr.pl, dihed.p| gscore.pl
cluster.pl

latticesim.pl
genchain.pl
rebuild.pl

ensmin.pl enseval.pl enslatsim.pl ensrun.pl enscluster.pl
checkin.pl

getprop.pl setprop.pl

showcluster.plbestcluster.pl

aarex.p| aarexAmber.pl
latrex.pl
rexinfo.pl

hlamc.p| hlamcrex.pl

All-atom energy evaluation with CHARMM/Amber
All-atom minimization with CHARMM/Amber
All-atom molecular dynamics with CHARMM/Amber
Convert and manipulate PDB files

Complete missing atoms in protein structures
Mutate residues in protein structures

Analysis of protein conformations
Clustering of a set of conformations

Lattice-based low-resolution simulations with MONSSTER
Generation of low-resolution representation from all-atom models
Reconstruction of all-atom models from low-resolution representations

Ensemble computing applications
Create ensemble from external sources
Read/set ensemble property values
Cluster-based analysis of ensemble data

All-atom replica exchange simulations with CHARMM/Amber
Lattice model replica exchange simulations with MONSSTER
Extract replica exchange data

Hybrid multiscale lattice/all-atom Monte Carlo sampling protocol

predominantly from a user’s perspective. The following de- ing utilities assume reasonable default values for a number
scription will focus on user programs rather than the under- of parameters, which can be altered by the user through
lying packages and support programs; however, some exam-additional command line options if necessary. For example,
ples on how to use the packages as a library will be given asminCHARMM.plwithout any further options will perform
well. We will describe the basic functions for all-atom and a short minimization in vacuum on a structure given as
low-resolution modeling and then continue with enhanced input and write the minimized structure to standard output.
sampling and multiscale modeling applications. Parameters can then be altered to include implicit solvent
[23,24] change the cutoff for non-bonded interactions, or
the number of minimization steps, among other options. As
another examplendCHARMM .plwith default parameters
will automatically recognize explicit water molecules in
The central part of the all-atom modeling components the input file in PDB format and setup and run a standard
revolves around interfaces to the molecular mechanics molecular dynamics protocol with periodic boundary con-
packages CHARMM1] and Amber{2]. In this respect the  ditions [25] and particle mesh Ewald electrostatif&s].
MMTSB Tool Set may be viewed as an alternative user The same default usage will use implicit solvent based
interface to CHARMM and Amber for certain standard on a generalized Born formalisfi27] instead, if explicit
modeling tasks. The tool set utilities are meant to provide solvent molecules are not found. While many options are
access to these powerful programs without requiring the available to support a number of commonly used features
user to go through the learning curve of understanding thein CHARMM and Amber, the MMTSB Tool Set does not
specific command and data input and output protocols of aim to provide a complete interface to the full level of
each program. The functionalities that are provided through functionality of either one of these very complex molecular
the MMTSB Tool Set focus on energy evaluations, min- modeling programs. However, for modeling tasks that go
imization, and molecular dynamics runs with the utilities beyond the capabilities of the provided utilities, the tool
enerCHARMM.pl minCHARMM.p] mdCHARMM.pl en- set may still be used to facilitate the preparation of input
erAmber.p] minAmber.pl and mdAmber.pl respectively. structures and setup procedures.
Input structures are expected to be in standard PDB format While the function of the MMTSB Tool Set as an in-
with necessary name and format conversions done auto-terface to CHARMM and Amber may be very useful in
matically and transparently for standard protein structures. itself, it should be emphasized again at this point that the
A special utility, convpdb.pl is also available for manual real strength of the tool set lies in the combination of these
PDB format translations as well as a variety of manipula- basic all-atom modeling functions with other simulation
tions that may involve changing residue numbering, editing techniques that are not available in CHARMM or Amber.
chain identifiers, translating coordinates, and subselectingThese are in particular enhanced sampling facilities based
or merging structure fragments. All of the all-atom model- on replica exchange methodology, multiscale modeling

3. All-atom modeling
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applications in a combination with low-resolution sam- tion has to be recreated by other means. Several methods are
pling, and ensemble computing techniques that allow the available for the reconstruction of complete all-atom mod-
efficient application of a given modeling task to a large set els at moderate levels of accuracy based grb&ckbones
of structures via distributed parallelism. Further aspects of [29-32] In this case the backbone needs to be completed
this functionality will be described in more detail below. and side chains are typically added from a rotamer library
and then annealed in order to resolve steric clashes. If the
low-resolution model is side chain center based, one can use
4. Low-resolution modeling a slightly different reconstruction algorithfd6]. Because
the side chain center is known, the reconstructed structures
Low-resolution modeling within the MMTSB Tool Setis are generally quite close<(LA) to the original structure
based on the MONSSTER progrdf®]. MONSSTER im- from which a low-resolution model was generated. The re-
plements the SICHO (side CHain only) model where each construction program is part of the MMTSB Tool Set and
amino acid in a polypeptide chain is represented by a single available through theebuild.pl utility. The rebuilding pro-
virtual particle located at the side chain center of mass andcedure can handle on- as well as off-lattice low-resolution
projected onto a cubic lattice with 1.45 A grid spac[2§]. models and is able to take advantage qf €ordinates,
Such a model is particularly well suited for constant temper- if present, to build more accurate peptide backbones than
ature or simulated annealing type Monte Carlo simulations would be possible with side chain centers alone.
based on an energy function that is governed by physical As a first example how a combination of low-resolution
and knowledge-based terms. As with CHARMM and Am- and all-atom representations can be useful for common
ber for all-atom modeling tasks, the tool set can also be usedmodeling tasks, one may consider the computational mu-
as a user interface for running low-resolution simulations tation of residues in a given protein structure. Off-lattice
with MONSSTER. The central utility for running either con-  low-resolution models based on side chain centers and C
stant temperature or simulated annealing lattice simulationscoordinates can be used to preserve the backbone and the
is latticesim.pl Other supporting utilities are available for center of the original side chain while allowing the recon-
access to MONSSTER output files as well as the genera-struction of the mutated amino acid onto the same backbone
tion of sequence files, lattice chains, and other input files at the same location. This may be done through a combi-
that are needed when running the MONSSTER program in anation of thegenchain.pland rebuild.pl utilities, or more
more manual fashion. Through the MMTSB Tool Set, lattice conveniently withmutate.p| which is intended specifically
simulations can also benefit from enhanced sampling tech-for such computational mutation tasks.
nigues and ensemble computing facilities. The latter is par-
ticularly useful for structure prediction applications where a
very large number of structures are often generated with the6. Ensemble computing
fast lattice sampling protocol.
Certain applications such as structure prediction, docking
experiments, or estimates of conformational or interaction
5. Trandation between all-atom and low-resolution energies often involve relatively large ensembles of differ-
models ent conformations for a system of interest. Such ensembles
may be assembled from simulation snapshots, the endpoints
Both levels of detail, all-atom and low-resolution repre- of simulated annealing runs as with the low-resolution
sentations, are brought together by MMTSB functions that lattice model described above, or by other means of confor-
allow the generation of lattice chains from all-atom struc- mational sampling. In many cases the ensemble structures
tures and the reconstruction of all-atom structures from are then evaluated and compared in one way or another,
lattice chains. Such mapping functions are essential for atypically with the goal of extracting the most favorable en-
multiscale modeling strategy and should preserve initial semble members as the structures with the highest stability
structures as much as possible through complete translatiorand, consequently, highest biological relevance. It may also
cycles. The utility for the generation of low-resolution mod- be desirable to manipulate all of the ensemble structures in
els from all-atom structures igenchain.pl It is primarily the same fashion in order to improve the evaluation pro-
intended for generating lattice models suitable for MON- cess, for example by regularizing all of the conformations
SSTER, but it can also be used to generate related typeghrough force field based minimization.
of reduced models with or without additional particles at The MMTSB Tool Set provides convenient facilities for
C, positions, either in continuous space or projected onto handling structural ensembles in this manner. It allows the
cubic lattices with different grid spacings. organization of ensemble members in the form of a sim-
The reduction from all-atom models to low-resolution rep- ple database, along with associated properties such as en-
resentations is fairly simple and straightforward. The recon- ergetic terms or structural quantities, and includes utilities
struction of all-atom models from low-resolution models, for the application of the same operation on a whole en-
on the other hand, is more challenging since lost informa- semble of structures, in what we call ensemble computing.
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Such computations are highly amenable to parallel comput- involving up to 50,000 ensemble members, better perfor-
ing environments, and the MMTSB Tool Set can take ad- mance for larger ensembles could be obtained through a
vantage of common architectures from distributed or shared more efficient database design. The use of database engines
memory parallel clusters to loosely coupled sets of hetero- would be an option if performance improvements turn out
geneous machines through the use of a standard TCP/IRo be necessary in the future.

socket-based networking protocfd3]. With applications There are four ways for generating structure ensembles
such as protein structure prediction in mind, special empha-within the MMTSB Tool Set. The first option, aimed at
sis is put on tools that allow the efficient minimization and structure prediction applications, generates ensembles from
evaluation of energies based on CHARMM for an ensemble low-resolution lattice simulations witlenslatsim.pl This

of structures. These functions are available with the utili- utility is an ensemble version dédtticesim.pltaking advan-

ties ensmin.pland enseval.plrespectively. A more general tage of parallel execution and allowing the automatic recon-
utility, ensrun.p] allows any command or command script struction of all-atom models from the final lattice models. In
to be run on a set of structures in an ensemble either forthe second option one can generate ensembles from replica
calculating a property of interest or generating new sets of exchange simulations, which will be explained in more de-
structures. The ensemble facility in the MMTSB Tool Setis tail in the following section. For all other purposes, there
designed to maintain multiple conformations for each mem- is a general utilitycheckin.plfor creating new ensembles
ber of an ensemble. Such sets of conformations may be de-or adding one or more structures to an existing ensemble
rived through minimization, short molecular dynamics runs from external sources. Finally, as a fourth option, because
or other means of structure manipulation and they are iden-of the simple database structure one may simply create an
tified through user-defined tags. This expands the ensembleznsemble directory structure and copy files manually. This
idea borrowed from statistical mechanics to a collection of is not recommended, but it may be more practical in combi-
structures where each member is represented not just by on@ation with other computational tools if integration within
but by any number of related conformations. In this organi- the MMTSB Tool Set is not possible or desirable.

zational scheme, multiple ensembles are only needed for en- Each set of structures in an ensemble has an associated
tirely different sets of conformations or conformations that property data file, which is queried most conveniently with
belong to a different system altogether. In these cases, mul-the utility getprop.p) but could also be easily read with
tiple ensembles would be distinguished simply by keeping other external programs, if necessary. The properties stored

the data files in different subdirectories. in this file are identified with arbitrary property tags and may
The internal organization of ensembles within the be comprised of energy terms calculated wéthseval.pl
MMTSB Tool Set is illustrated irFig. 2. A relatively sim- structural properties calculated witalcprop.p| or other

ple, text file-based database setup was chosen to maintaimproperties resulting from external programs that are run with
a level of transparency and openness that allows easy acensrun.pbver the whole ensemble. Itis also possible to enter
cess to stored conformations and properties with externalsingle values up to whole data series in a manual fashion
programs. However, such a design comes at the expense ofith setprop.pl
efficiency for very large structural ensembles. While signif-  While some of the tools for ensemble computing are
icant limitations have not become obvious for applications specifically aimed at multiscale modeling and structure pre-
diction applications, the more general utilities make this kind
of infrastructure accessible for other applications as well. It
was our intention with this design that the MMTSB Tool
Set will become useful for a variety of ensemble comput-
ens.cfg ing tasks that involve the organization and manipulation of

large sets of molecular conformations in new contexts.
tagl.prop.dat

tag2.prop.dat 7. Replica exchange simulations

An exploration of the potential energy landscape for a
system of interest, usually with the goal of finding low-lying
regions, is the central theme of most molecular modeling
applications. Sampling efficiency with standard simulation
techniques such as molecular dynamics or Monte Carlo at a
given temperature is governed by the distribution and height
of energetic barriers, or ruggedness, and the slope towards
the energy minimum in the landscape, both of which deter-
mine the kinetic behavior of the system. Barrier crossings
Fig. 2. Directory and file organization used for ensemble computing. ~ are facilitated at higher temperatures, but a single simulation

s

tagl.pdb
tag2.pdb
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at an elevated temperature would sample an altered freeMONSSTER. In each case, the simulation control and ex-
energy surface due to temperature-dependent entropic conehange algorithm are implemented on the scripting language
tributions. As a dramatic example, a single simulation of level. In fact, most of the same code is reused in these cases
a protein at a temperature above its folding temperature and could be combined easily with other applications in or-
would eventually result in protein unfolding, since unfolded der to add replica exchange sampling. Replica exchange sim-
conformations have a lower free energy than conformations ulations are particularly suitable for parallel environments
in the folded, native basin at such temperatures. due to their inherent parallelism and low cost of communi-
Enhanced sampling schemes have been introduced to adeation, since communication occurs only infrequently at ex-
dress this problem, so that it becomes possible to overcomechange events. As for the ensemble computing functions, the
energetic barriers more easily while maintaining sampling MMTSB Tool Set supports most parallel architectures and
on the relevant free energy surface at room temperature. Inenvironments through its own platform independent com-
one such method, called replica exchange or parallel tem-munication protocol.
pering, multiple simulations or replicas of the same system The main tools for running replica exchange simulations
are run in parallel at different temperatufé,34] The in- in the MMTSB Tool Set aréatrex.plfor lattice-based replica
dividual simulations are then coupled through Monte Carlo exchange simulations using MONSSTER, aadex.pland
based exchanges of simulation temperatures between repliaarexAmber.pfor all-atom replica exchange simulations us-
cas at periodic intervals. In this scheme each simulation vis-ing CHARMM and Amber, respectively. During and after a
its a range from low to high temperatures so that sampling replica exchange run simulation data can be queried in many
is provided at the temperature of interest, while traversing ways with therexinfo.pl utility. Replica exchange simula-
conformational space more easily at elevated temperaturestions run through the MMTSB Tool Set involve a special
More formally, temperatures are exchanged between two directory structure for organizing and storing the conforma-

replicas,i andj, with temperatured;, T; and energies;, tions from each of the individual replicas, but an option is
E; according to the canonical Metropolis criterion for the available to automatically build an ensemble data structure
exchange probability: from the lowest temperature conformations for further pro-

cessing with the ensemble computing tools.
{ 1 fora<o0
p =

exp(—A) forAa >0

8. Advanced multiscale sampling methods
where

_( 1 1 >( _E) The utilities for lattice-based low-resolution sampling,

—\kT; KT; d ! for all-atom sampling, and for the translation between

. ) ) ] low-resolution and all-atom models can be combined to

Applied to one or more pairs of simulations after short jmplement a basic multiscale modeling protocol. This is

runs of molecular dynamics or Monte Carlo simulations at rovided with the utilitypredict.pl which integrates these
constant temperature, this protocol can improve the samplmgstelos into a single pass from low-resolution sampling to

efficiency by orders of magnitude depending on the type and 5).atom based scoring for structure prediction applications.

size of the system. Replica exchange simulations have been;qe complex multiscale modeling protocols, however,
used with great success for the ab initio folding of peptides

in explicit solvent from first principle$8—10,35] In other
applications, shorter replica exchange runs may be used for

improved local structure refinement or simply for ranking \ 4
a set of structures according to relative free energy, since
the most favorable conformations will populate the lowest Short lattice simulation (MC)

temperatures. While replica exchange simulations based on
the exchange of temperatures have been most popular, other ..o _
forms of biases can also be used to reweight sampling prob- Carlo

abilities[6,7]. For example, umbrella type biasing potentials Move All atom minimization
could be used to restrain the radius of gyration or the frac-
tion of native contacts to different values in each replica and,
in a more general case, multiple biases can be combined
in two-dimensional or even higher-dimensional replica ex-
change simulationg36].

In the MMTSB Tool Set, replica exchange sampling is
available to achieve enhanced sampling of all-atom mod-
els with CHARMM or Amber, as well as enhanced lat-
tice based sampling of low-resolution representations with Fig. 3. Hybrid lattice/all-atom simulation scheme 1.

All atom energy evaluation

Metropolis
Criterion

accept/reject
conformation
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Monte
Carlo
Move

Metropolis
Criterion

Fig. 4. Hybrid lattice/all-atom simulation scheme II.

may involve the continuous transition between low and

high-resolution models to take advantage of efficient sam-

tions, calculation of the radius of gyration, the fraction of
native contacts, or standard peptide chain dihedral argles

pling with the low-resolution model and an accurate energy v, w, and x1. In ensemble computing applications, most of

function with all-atom models. While any protocol could be
setup as a custom application using the MMTSB Tool Set

these structural properties can be calculated in parallel for a
whole set of ensemble structures with the utitisicprop.pl

packages or programming library, we have implemented in order to facilitate analysis of ensemble structures.

two advanced modes of multiscale modeling simulations

The clustering functions are particularly helpful for struc-

that appear to be particularly useful. Both of these sampling ture prediction tasks. Clustering is done based on pairwise
protocols follow the idea of sampling conformations on the distances, measured either as coordinate or dihedral angle
all-atom energy landscape using the lattice model, and areroot mean square deviations independent of any single ref-

implemented inhlamc.pl In the first mode, illustrated in
Fig. 3 a Monte Carlo simulation is run with moves that

erence structure. The results are sets of structures with sim-
ilar conformations according to the given criteria. It is then

consist of a very short constant temperature lattice simula- possible to compare energy scores between entire clusters as

tion followed by all-atom reconstruction and short all-atom
minimization before the final all-atom energy is used in the
Metropolis criteria. The second mode&ig. 4) couples lattice

and all-atom models more tightly by running short all-atom
molecular dynamics simulations that follow conformational
moves from lattice simulation through side chain center
restraints. Again, the final energy is used in a Monte Carlo
simulation to either accept and continue from favorable
conformations or reject unfavorable conformations and try

the average score from all of their respective members and
obtain statistically more reliable quantities such as energy
scores from a cluster of similar conformations rather than
single conformations. This type of analysis is facilitated for
ensembles with thenscluster.pland bestcluster.pltilities

for the generation of clusters and cluster-based analysis, re-
spectively.

another move. Instead of a single Monte Carlo run, either 10. Applications

mode can alternatively be coupled with replica exchange

sampling at different temperatures wiltamcrex.pl Other
similar multiscale sampling algorithms are certainly pos-
sible, and the application utilities provided may serve as
starting points for implementing new sampling schemes.
While more testing and tuning of these novel methods is
needed, we believe their availability through the MMTSB
Tool Set will spark further interest.

9. Structure analysis functions

A number of utilities in the MMTSB Tool Set can be used
for limited structure analysis tasks. They include functions

Having provided an overview of the different components
of the MMTSB Tool Set, we now present a few typical appli-
cations that illustrate the use of the tool set—scoring of pre-
viously generated protein conformations with the ensemble
computing facility, folding of peptides via replica exchange
simulations, and the prediction of a missing fragment in the
context of a known structure.

10.1. Scoring of protein conformations
The energy based scoring of protein conformations is a

common task in structure prediction and docking protocols.
In these cases the scoring function is typically applied to a

such as clustering or the calculation of root mean square de-large number of conformations generated with a given sam-

viations and optimal superposition between two conforma-

pling method, with the goal of finding the most favorable,
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and presumably most native-like, structures. The ensemblefrom the output ofcomplete.plwith the tag caspcom-
computing facilities within the MMTSB Tool Set are partic- plete The complete.plutility automatically uses different
ularly well suited for such a task. The following example il- protocols depending on how much of the structural in-
lustrates the use of the MMTSB Tool Set for scoring predic- formation is missing. If only ¢ or backbone coordinates
tions for the structure of a fusagenic sperm protein from H. are present, the SCWRL utility30,38] is used to add
fulgens[37]. Predictions of this protein were submitted dur- side chains from a rotamer library, while missing hydro-
ing CASP4 (target id: T0125), the fourth community-wide gens are added with the HBUILD facility in CHARMM
assessment of structure prediction methods. For the ex-[1].

ample shown here, we downloaded all of the predictions The next step is a short minimization run with a distance
for the entire length of the sequence submitted as the firstdependent dielectric function. This can be done very conve-
model by participating prediction groups from the CASP niently with theensmin.plutility which uses CHARMM to
web site. This yielded a total of 90 structure predictions. do the actual minimization:

ensmin.pl —-cpus 4 -par minsteps=100,dielec=rdie,epsilon=4.0 caspcomplete min

11. Generation of an ensemble data structure from This command minimizes all of the completed structures
input files stored under theaspcompletdag and creates a new set
of structures with themin tag. In this example 100 steps

As the first step, an ensemble is generated from the set ofof minimization are requested with a distance dependent
predicted structures by using tkeckin.plutility: dielectric function and = 4. Depending on the size of the

checkin.pl casp T0125*.pdb

are given an identifying tagaspin the newly created en- g speed up the calculation. In this example four CPUs are
semble. Now that the predicted structures are available inyseq in a shared memory environment.

ensemble format, ensemble computing tools can be used for
further processing.

13. Evaluation of scoring function
12. Preprocessing of input structures
Finally, we can evaluate a scoring function for the mini-
Depending on how the input structures were generated, itMized structures. The ensemble computing tool for energy
is often a good idea to regularize and minimize the structures €valuation enseval.plis used as follows:

enseval.pl -cpus 4 —-set score=total -par gb min

before calculgting energy scores. Many structure predictions  Here, we are using a scoring function that includes im-
do not contain a complete set of atoms. Often, hydrogen pjicit solvation based on a generalized Born formal[&i,
atoms are missing and some predictions may consist only ofjn thjs case the GBMV methof89,40] as implemented in

C. coordinates. Therefore, as the first step we will run the cHARMM as the default when GB is requested. Again, four
complete.plutility in order to generate complete, all-atom  cpys are used in parallel to speed up the calculation. In this
structures for all of the predictions. Since we want to apply case the total energy of the entire molecular mechanics force
this command to all of the structures in the ensemble we usefie|q, including all bonded and non-bonded interactions as

ensrun.plas follows: well as the electrostatic solvation term, are used as the

ensrun.pl —-new caspcomplete casp complete.pl

This command runs theomplete.plutility for each
structure in the ensemble under tloasp tag, the only scoring function and assigned to a new property called
set of structures we have so far, and generates a new sescore
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14. Analysis of results 14.1. Folding of peptides with replica exchange
simulations
Once theenseval.pfun is complete the scores are avail-
able and can be queried witfetprop.pl A sorted list of all The MMTSB Tool Set adds enhanced sampling capabili-
values is obtained easily with the following command: ties to existing simulation programs such as CHARMM or

getprop.pl -prop score min | sort +1n

78 -6948.125290
77 -6948.045810
80 -6923.875040
8 =6 0229021 310

In this command the property nanseoreand structure Amber through the replica exchange simulation methodol-
tagminare used to identify the data set. Such a result may beogy. Replica exchange simulations can speed up sampling
sufficient for many applications, but often it is advantageous in conventional molecular dynamics simulations by orders
to form clusters of input structures based on mutual similar- of magnitude[8,12]. Such a gain in sampling efficiency
ity and then compare average scores over cluster memberss particularly attractive for the challenging problem of
to identify the lowest scoring clusters rather than individual folding peptides and proteins through simulation at atomic
structures. This requires a few additional steps and will be detail. Ab initio folding at atomic detail has been simulated
illustrated in more detail in the loop prediction example. directly with constant temperature molecular dynamics

Since the native conformation of this structure is available simulations only for very small peptides, where folding
from the protein data banjd1] (PDB code: 1GAK) it is times are on the order of hundreds of nanoseconds and
possible to calculate root mean square deviations (RMSD) considerable computational resources were Ug&#3]
between all of the predictions and the native structure. This When replica exchange simulations are employed, ab initio
can be done conveniently wittalcprop.pl which calculates  folding of peptides can be achieved for larger systems and
a number of structural properties, including RMSD: on much shorter timescal¢8,10,35] Further reduction of

calcprop.pl —natpdb lgak.pdb min

Both, the energy score and &MSD values, can now be
extracted with

getprop.pl -prop rmsdca,score min

4,236713 -6607.168500
5.965288 -6206.241270
4.499256 -6398.912490
7.499939 ~6505.901710

Bw N

The results are visualized iRig. 5 as a plot of energy ~ computational expense is possible if an implicit solvent
scores versus root mean square deviations from the nativedescription is used instead of explicit solvent molecules
structure. It can be seen that the energy scores decreast#4—47] It then becomes possible to fole-helices and
on average towards more native-like conformations, and theB-hairpins in a matter of days with moderate computa-
scoring function could be indeed used to identify the most tional resources. As examples we will consider the peptide
native like conformations, with a CRMSD of about 4A  (AAQAA) 3, which is known experimentally to be predom-
in this example. In a recent study, we have applied similar inantly a-helical [48], and the designed tryptophan zipper
protocols to all of the predictions submitted to CASP4 and hairpin SWTWENGKWTWK [49], for which an experi-
generally found good correlation between all-atom energy mental structure is available from NMR. A replica exchange
scores that include a realistic treatment of solvation and simulation with the MMTSB Tool Set starting from a com-
proximity of predicted conformations to the experimentally pletely extended conformation for either peptide is run from
obtained native structu[[é_?]_ the command line as follows:

aarex.pl —temp 8:270:550 -mdpar gb,cmap,scalerad,gbmvsa=0.012,dynsteps=500,blocked
-n 10000 extended.{aagaa/hairpin}.pdb
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Fig. 5. All-atom energy scoring function versus root mean square deviation (RMSDQ) ob@dinates with respect to native structure (PDB code: 1GAK).
The all-atom energy function based on the CHARMM22 force f{88] includes implicit solvent contributions from the GBMV implementation of the
generalized Born formalisr89,40] Data points with energies more positive thaB000 kcal/mol and more than 20 A RMSD are omitted for clarity.

In these simulations we are using the GBMV implemen- is indeeda-helical (see als&ig. 6). On the other hand, the
tation[39,40] of the generalized Born formalism with mod- most favorable replica in the hairpin simulation, replica 1,
ified van der Waals radii based on the set of radii developed clearly exhibits a hairpin-like secondary structure and de-
by Nina et al[50] and a hydrophobic term that depends lin- viates by only 1.4A RMSD from the experimentally de-
early on the solvent accessible surface area with a scalingtermined structure. However, in this example we also find
factor of 0.012 kcal/mol/A. We also use recently developed other structures at higher temperatures that contain partial
map-based/y backbone dihedral cross terms, in order to «a-helices. The excellent agreement of the simulated hairpin
adjust the balance betweenhelical and extended confor-  from replica 1 is also manifest fig. 6, where the final con-
mations from the original force fielfb1]. Both peptides  formation is compared with the structural ensemble from
are built with blocked termini. The eight temperature win- NMR measurementgl9].
dows are exponentially spaced from 270 to 550K resulting It is instructive to examine the evolution of RMSD and
in temperature exchange probabilities between replica pairstemperature for replica 7 in the (AAQAA)simulation
from 16 to 19% for the hairpin and from 16 to 25% for the (Fig. 78 and replica 1 in the hairpin simulatiofri§. 7b.
helical system. The simulations are each carried out over a
total of 10 ns simulation time for each replica (10,000 cycles
and 500 molecular dynamics steps (step size: 2fs) between’able 3 _ . _
exchanges), which takes about 1 week on eight nodes of aResults from replica exchange simulations of (AAQAA)

PC-based cluster. Replica | Temperature rank | Time spent at 270 K | Secondary structure
The data from replica exchange simulations can be ex- AAQAAAAQAAAAQAA
amined with therexinfo.pl utility and conformations may ; 4 67.8% —
be analyzed witlrms.pl and genseq.plParticularly useful g 25 94.8%  HHHHHHHEHH.
is an option to rank replicas according to the average tem- 10 8% HHHEHH.
peratures they have visited over a period of simulation time. 13 2.6% HHHHHHHHH. . . ..
This information can be used to identify the most favorable 61 Y
conformations from the replica with the lowest average tem- 64 00 e
peraturesTables 3 and 4ummarize the results from simu- 66 00 e
lations for (AAQAA)z and the hairpin system, respectively. 63 00 e

The data shows that the most favorable final conformations

at the lowest temperatures agree well with experimental ob- Temperature rank and percentage of time spent at the lowest tempera-

. . . . . . ture, 270K, are averaged over the last 1000 cycles (9000-10,000). The
servations. Repllca 7 in the simulation of (AAQA{A)NIth secondary structure is obtained from the final conformation after 10,000

the lowest average temperature at the end of the simulation,cycies using the DSSP prograiss].
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Table 4
R?ebsSIts from replica exchange simulations of the harpin sequence SWTWENGKWTWK
Replica | Temperature rank | Time spentat 270 K | Secondary structure | Co RMSD in A
SWTWENGKWTWK
1 1.1 87.8% .EEEE. .EEEE. 1.4
6 2.2 109% e 4.7
8 3.8 0.9% HHHHH...... 5.7
7 4.1 04% | e 3.9
5 53 0.0 e 6.9
2 5.7 00 e 3.3
4 6.7 0.0 e 5.9
3 7.2 0.0 e 5.5

Temperature rank and percentage of time spent at the lowest temperature, 270K, are averaged over the last 1000 cycles (9000-10,000). The second:
structure is obtained from the final conformation after 10,000 cycles using the DSSP priianC, coordinate root mean square deviations are
calculated with respect to the native structure obtained from NMR experiments (PDB code 1LE1, mpt8l 1)

In both cases, native-like structures are reached relativelychange enhanced sampling methods in combination with

quickly (after 5 and 2.5ns, respectively). The variations modeling packages such as CHARMM and Amber. We hope

in temperature suggest extensive conformational samplingthat it will enable further studies in peptide folding, protein

at higher temperatures during the beginning of the simu- folding, and protein structure refinement.

lation until a favorable, native-like conformation is found

and then the temperature remains at the lower tempera-14.2. Prediction of missing fragments in proteins

tures. For the hairpin, the step-wise reduction of RMSD

with respect to the native structure can be correlated with  The large number of solved experimental protein struc-

the temperature fluctuations. Major transitions at 1.8 and tures provides the basis for finding at least partial templates

2.5ns appear to occur during or shortly after brief periods in most structure prediction applications based on sequence

of elevated temperatures around 500 K when the crossinghomology or fold recognition. This reduces typical structure

of conformational barriers is greatly facilitated. prediction efforts from entirelyde novopredictions to the
This example is meant to demonstrate how the MMTSB still challenging task of modeling unknown structural frag-

Tool Set can be used to take advantage of the replica ex-ments in the context of a template. In principle, a multiscale

Fig. 6. Final conformations from lowest temperature replicas after 10,000 cycles (10ns) in simulations of (AAQEH)and the hairpin sequence
SWTWENGKWTWK (right). The hairpin structure is compared with the first 10 NMR models from PDB entry 41
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Fig. 7. (a) Time series of simulation temperature and numbes-bélical i, i
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Replica exchange cycle

10000

+ 4 hydrogen bonds in replica 7 over the course of the simulation of

(AAQAA) 3. (b) Time series of simulation temperature and RMSD with respect to the native structure (PDB: 1LE1) in replica 1 over the course of

the simulation of SWTWENGKWTWK.

modeling protocol as outlined above is followed, but with
the restraint of keeping the template structure fixed and the
possibility to limit calculations to the vicinity of a modeling

region and reduce computational expenses. How this can be

done efficiently with the MMTSB Tool Set will be illustrated
in the following example, which demonstrates the modeling

15. Generation of model conformations from lattice
simulations

In the first step, conformations for the missing fragment
are generated using lattice-based low-resolution sampling.
As input for this step only a sequence file and the tem-

of residues 48 to 55 in the zinc endopeptidase astacin fromplate structure are needed. The sequence file contains

European fresh water crayfish (PDB code: 11AB). The na-
tive structure is a mixea/B-fold, and the missing 8-residue

the entire sequence for the template as well as the miss-
ing part. It also provides secondary structure information

piece constitutes a long, solvent-exposed loop between twothat is trivially obtained for the template and can be pre-

B-sheet segments.

dicted for the missing part with good reliability using a
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variety of different secondary structure prediction meth- are entirely flexible, surrounded by a first layer of weakly
ods. restrained residues and a second layer of highly restrained
In this example, we will use replica exchange simulations residues. Depending on the size of the system and the chosen
with the lattice model for enhanced sampling. The command cutoff this may result in significant computational advan-
would then look like this: tages if only part of a large system needs to be considered.

latrex.pl -n 1000 -temp 8:0.9:1.6 -1 48:55 -ensdir ens -ens lat -par seg=liab.seq
liab.incomplete.pdb

This command will run 1000 cycles of replica exchange

on eight CPUs, which takes on the order of 1h on modern e MMTSB Tool Set offers the utilitgnscut.pto cut out
clusters. With this command, all-atom structures are auto- g,ch regions for an ensemble of structures and automatically
matically rebuilt from the lowest-temperature replicas and geqp the necessary residue restraint lists. It creates the list
stored as an ensemble for further processing. Since-the ¢ yegidues that are included in the cutout region based on
option is given with the residues of the unknown structural gy of the different conformations for the variable residues as
fragment, only these residues are sampled freely, while theg,nq in the ensemble, so that the same residues are cutout

rest of the structure is restrained harmonically to the posi- 5 each ensemble structure and energy values calculated at
tions from the incomplete input structure that is used as a 5 |ater point remain comparable.

template. The structures sampled at the lowest temperature |, our example, we will use a cutoff of 12 A for including

at each cycle are used to build an ensemble data structurgegiques at all and a cutoff of 9 A for residues that are weakly
in the directoryens restrained:

enscut.pl -1 48:55 —-hard 12 -soft 9 lat latcut

The cutout structures are then available under théeatag
cutin the same ensemble and can be used for further process-
ing. In this example the original structure with 200 residues

16. Selection of protein environment near region of is reduced to a region of interest of 123 residues, which
interest translates into significant time savings in subsequent steps.

The sampled structures could now be minimized, scored,
and analyzed as in the example above. With 200 residues, thel7. Scoring of conformations
complete protein is fairly large, and both the minimization
and energy evaluation steps are relatively expensive. Since Following the example above, the sampled conformations
only a small part of the structure has been varied in the sam-are first minimized before being scored with an energy func-
pling protocol, one does not necessarily need to consider thetion that includes implicit solvation based on the generalized
entire structure. The part of the structure in the vicinity of Born formalism[39,40}

ensmin.pl -cpus 4 -par minsteps=100,dielec=rdie,epsilon=4.0 -opt ens/latcut.options
latcut cutmin

enseval.pl -cpus 4 —-set score=total -par gb cutmin

In this case, we create a minimized structure under the
the variable residues can be cut out according to a distanceag cutmin Options specifying restraints to keep the cutout
cutoff similar to the range of electrostatic interactions, for region intact during the minimization as described above
example 12 A. While this would very likely result in broken are read from an options file generated automatically by
peptide chains at the edge of the cutout region the structureenscut.plwhen the structures were reduced.

can be kept intact if relatively strong restraints are applied

to fix the outer layer residues in place. This is in the spirit of

the stochastic boundary approach to simulating localized re-18. Clustering and analysis

gions of biopolymer structurg82]. Strains between highly

restrained residues and entirely unrestrained parts may be At this point energy scores are available for the sampled
relieved further if a second, intermediate layer of weakly re- conformations and we can proceed to cluster the sampled
strained residues is introduced. This setup then results in aconformations based on mutual root mean square deviations
system where the variable residues that are being modeledvith the commanaknscluster.pl
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enscluster.pl -1 48:55 cutmin

Since we are primarily interested in the conformation ) .
of residues 48 to 55, we will cluster only based on these tion the RMSD values with respect to the native conforma-

residues, disregarding the surrounding template. A quick tion would obviously not be available.
view of the resulting clusters is available with the command 1€ lowest energy conformation of the best cluster t.3 can
showcluster.pl then be found by callingetprop.plwith the cluster name

showcluster.pl cutmin

5 1000 7
18dl 84 0
2 44 0
%S 158 0
E.d 435 0
12,9 187 0
i5 619) 38 0
B Bl 0

In this example, we find 7 clusters with sizes ranging
from 38 to 435 memberdrig. 8 shows the sampling for
this example with the experimental native structure as the

referencg_for the RMSD calculations. . with the convpdb.plutility and may be followed by a quick
The utility getprop.plcould now be used with each cluster L . :

. minimization run with restrained Catoms to anneal the

to obtain average energy scores and rank clusters accord-

. . . - merged structure.
ingly. However, this can be done more conveniently with g

the bestcluster.pltility, which automatically calculates av- In this case, the cluster with the conformations generated
erage scores .gtandﬁrd deviations, and é/tatistical errors fo}crom the lattice protocol that are closest to the native struc-
9 ' ! ture was easily identified with this multiscale sampling pro-

all clusters and ranks them accordingly. It can also calculate : . I
tocol. While the best conformations in this cluster are close

averages for only the subset of structures where the SCOre$ . 5> A RMSD from the native. the conformation with the

;ﬁ:lx%tgéngmﬁjrtsggiﬁ Sviﬁlii?niffggige?ené ;jrS(IaStls gteelr?c-: lowest energy score is found with an RMSD value of 3.6 A.
yhig 9 This structure, shown ifig. 9, has the correct loop confor-

clashes that .COUId ngt be resolvgd in the m|n.|m|zat|on PO~ mation for the most part but is shifted somewhat with respect
cedure, and is used in the following example:

as an additional argument. Finally, one may want to merge
the final conformation with the original template in order
to regain a complete protein structure. This can be done

bestcluster.pl —-prop score —crit avglow cutmin

155 1552 -1120.1448 183.6851 165 630
187 33 =102 0567 21907 689 19.0564
44 39 1100658932 21806557 3550129

o o ot of of o o
~N s oy DO W

84 65 =970 008882752203 2] isiesl
38 32 -827.8118 207.4521 SET G2
435 321 -760.3633 290.0010 176710 3 7t
I3y 51 -508.4473 843.4406 118.1053

We find that cluster t.3 (colored red ifig. 8 has the to the experimental structure. At this point further sampling
lowest average score (column 4) and the statistical error of and refinement could focus only on structures from the best
16.6 kcal/mol (column 6) indicates that the difference of ap- cluster in order to better distinguish structures closest to the
proximately 100 kcal/mol to the next best cluster t.5 (colored native conformation.
blue inFig. 8) is significant. The second column shows the
total number of conformations in a given cluster. Column 18.1. Programming interface
three indicates how many were actually used to compute
the average, while the remaining conformations with much  The user-level utilities provide a comprehensive set of
higher energy scores were excluded. The results confirm thefunctions for enhanced and multiscale sampling applica-
qualitative picture inFig. 9 of a downward slope of aver-  tions; however the MMTSB Tool Set can also be used as a
age energy towards more native-like structures. It should beprogramming library for new tasks that involve or combine
stressed, though, that in a real structure prediction applica-all-atom modeling, low-resolution modeling, and enhanced
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sampling methods. Such new applications would have to low-resolution lattice chains based on backbone dihedral
be written in Perl in order to take full advantage of the angles in rebuilt all-atom structures. This is done with the
Perl packages from the tool set, but it is always possible following steps: First, the SICHO chain file in MONSSTER
to include components from other compiled or scripting format containing the input lattice structure is read. Since
languages through wrappers. One may also wrap the Perlthe lattice chain does not contain any sequence information,
scripts if they are to be used in other scripting environments we need to read a sequence file, also in MONSSTER format,
although this may not always be an efficient solution. for this example. An all-atom molecule object is then rebuilt

As an example demonstrating the use of the tool set from the SICHO lattice chain. Th¢ and+r dihedral angles
packages as a programming library for new Perl scripts, can then be calculated, analyzed, and written out to standard
let us consider the analysis of secondary structure for output. The corresponding script could be as follows:

#!/usr/bin/env perl

use Molecule;
use Sequence;
use SICHO;

use Analyze;

my S$segfile=shift @ARGV;
my S$Schainfile=shift @ARGV;

my S$chain=&SICHO: :new() ;

Schain->readMONSSTER ($chainfile) ;

my $seg=&Sequence: :new() ;

Sseq->readMONSSTER ($segfile) ;

my S$mol=g&Molecule: :new() ;

Smol->rebuildFromSICHO ($seq, $sicho) ;

my (S$phi,S$psi)=&Analyze::dihedral (Smol) ;

my $molres=Smol->{chain}->[0]->{res};
for (my $i=1; S$i<$#{Smolres}; S$i++) (
my $sectype="other”;
Ssectype=“beta” if (Sphi->[$i]<0 && Spsi->[$1]>90);
Ssectype="alphaR” if (Sphi->[$i]<0 && Spsi->[$i]<60 && Spsi->[$1i]1>-40);
S$sectype="alphal” if ($phi->[$i]>0 && S$psi->[$i]>-40 && S$psi->[$i]1<50);

printf “%3s %3d %5.0f %5.0f %s\n”,

Sres->[$i]->{name}, Sres->[$i]->{num}, $phi->[$1i],$psi->[$1i], $sectype;
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Fig. 8. Energy score including implicit solvent vs. RMSD from native conformation for loop residues 48-55 in astacin (PDB code: 11AB) for structures
generated with lattice sampling protocol. The cluster with the lowest average energy score, t.3, is colored in red, the second best clusteret5, is co
in blue.

This script uses four packages from the MMTSB Tool 19. Summary
Set and would require significantly more effort if it had to

be written without using the functionality of the tool set. We have introduced the MMTSB Tool Set, a collection
When this example is run, it expects a sequence and chainof utilities and programming libraries aimed at enhanced
file as input and writes out a list of residues with their sampling and multiscale modeling applications in struc-
corresponding/ys angles and assigned secondary structure tural biology. The tool set interfaces with the standard
types. molecular modeling packages CHARMM and Amber for
all-atom modeling and with MONSSTER for low-resolution
lattice-based simulations. It adds a number of functions, such
as the translation between all atom and low resolution repre-
sentations, and implements replica exchange sampling both
for all-atom and lattice-based simulations. Another feature
the MMTSB Tool Set enables ensemble computing for the
application of programs and functions to large sets of struc-
tures. The MMTSB Tool Set is intended primarily to address
problems in protein structure prediction, but it also serves
as a simplified interface to the complex modeling packages
CHARMM, Amber, and MONSSTER and we certainly
hope that it will become useful for other applications as
well.

We have presented three illustrative examples of how the
MMTSB Tool Set may be used. While the examples present
real cases, they are not intended to validate the methods that
were being used. While a more careful evaluation of the
methodology has been ongoif#6,17,51,53,54]and will
be continued in the future, the purpose of this paper is to
demonstrate the capabilities of the tool set.

Future developments of the MMTSB Tool Set may ex-
pand the availability of new enhanced sampling methods,
Fig. 9. Predicted loop conformation (orange) with lowest score from best implement more advanced multiscale sampling algorithms,
cluster (t.3) compared with experimental structure (blue). and offer an alternative graphics-based user interface.
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